Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Hexanenitrile

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny, director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil435. ± 5.KAVGN/AAverage of 17 out of 18 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus184.15KN/ATimmermans, 1952Uncertainty assigned by TRC = 1.5 K; TRC
Tfus192.84KN/ADreisbach and Martin, 1949Uncertainty assigned by TRC = 0.05 K; TRC
Tfus193.75KN/ASimon, 1929Uncertainty assigned by TRC = 1. K; TRC
Tfus228.15KN/AJaeger and Kahn, 1915TRC
Quantity Value Units Method Reference Comment
Tc633.8KN/ACastillo-Lopez and Trejo Rodriguez, 1987Uncertainty assigned by TRC = 0.2 K; Visual, TE with digital voltmeter cal. by meas. on alkanes.; TRC
Tc621.8KN/AGuye and Mallet, 1902Uncertainty assigned by TRC = 2.5 K; TRC
Tc622.05KN/AGuye and Mallet, 1902, 2Uncertainty assigned by TRC = 1. K; TRC
Tc621.75KN/AGuye and Mallet, 1902, 2Uncertainty assigned by TRC = 1. K; TRC
Quantity Value Units Method Reference Comment
Pc32.2 ± 0.3atmAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Deltavap11.45kcal/molN/AMajer and Svoboda, 1985 
Deltavap11.45 ± 0.024kcal/molVHoward and Wadso, 1970ALS
Deltavap11.4 ± 0.02kcal/molCHoward, Wadsö, et al., 1970AC
Deltavap11.7kcal/molEBDreisbach and Shrader, 1949Based on data from 365. - 437. K. See also Dreisbach and Martin, 1949, 2 and Emel'yanenko, Verevkin, et al., 2005.; AC
Deltavap11.4 ± 0.02kcal/molMMHeim, 1933Based on data from 293. - 452. K. See also Emel'yanenko, Verevkin, et al., 2005.; AC

Enthalpy of vaporization

DeltavapH (kcal/mol) Temperature (K) Method Reference Comment
10.3386.A,EBStephenson and Malanowski, 1987Based on data from 371. - 442. K. See also Meyer and Hotz, 1973.; AC
10.7359.EBMeyer, Renner, et al., 1971Based on data from 344. - 441. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
371.23 - 441.664.1904 ± 0.00131553.81 ± 0.89-65.811 ± 0.097Meyer and Hotz, 1973 
365.13 - 436.804.102481502.715-70.588Dreisbach and Shrader, 1949Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


IR Spectrum

Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Coblentz Society, Inc.

Condensed Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View scan of original (hardcopy) spectrum.

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner COBLENTZ SOCIETY
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin WYANDOTTE CHEMICALS CORP., WYANDOTTE, MICHIGAN, USA
Source reference COBLENTZ NO. 3771
Date Not specified, most likely prior to 1970
State LIQUID
Instrument Not specified, most likely a prism, grating, or hybrid spectrometer.
Path length 0.005 CM
Resolution 4
Sampling procedure TRANSMISSION
Data processing DIGITIZED BY NIST FROM HARD COPY
Boiling point 160-162.5 C

This IR spectrum is from the Coblentz Society's evaluated infrared reference spectra collection.


Mass spectrum (electron ionization)

Go To: Top, Phase change data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1009
NIST MS number 228551

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Timmermans, 1952
Timmermans, J., Freezing points of organic compounds. VVI New determinations., Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]

Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 2875-8. [all data]

Simon, 1929
Simon, I., Freezing Temperature of Organic Compounds. XI. Compounds in C5 and C6., Bull. Soc. Chim. Belg., 1929, 38, 47-70. [all data]

Jaeger and Kahn, 1915
Jaeger, F.M.; Kahn, J., The temperature-coefficients of the free molecular surface energy of liquids between -80!31 and 1650!31: x measurements relating to a series of aliphatic compounds, J. Chem. Soc., 1915, 108, 747-48. [all data]

Castillo-Lopez and Trejo Rodriguez, 1987
Castillo-Lopez, N.; Trejo Rodriguez, A., The critical temperatures and pressures of several n-alkanenitriles, J. Chem. Thermodyn., 1987, 19, 671. [all data]

Guye and Mallet, 1902
Guye, P.A.; Mallet, E., Critical Constant and Molecular Complexity of Several Organic Compds., C. R. Hebd. Seances Acad. Sci., 1902, 133, 168. [all data]

Guye and Mallet, 1902, 2
Guye, P.A.; Mallet, E., Measurement of Critical Constants, Arch. Sci. Phys. Nat., 1902, 13, 274-296. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Howard and Wadso, 1970
Howard, P.B.; Wadso, I., Enthalpies of vaporization of organic compounds IV. Alkyl Nitriles, Acta Chem. Scand., 1970, 24, 145. [all data]

Howard, Wadsö, et al., 1970
Howard, Peter B.; Wadsö, Ingemar; Nyborg, Jens; Ragnarsson, Ulf; Rasmussen, S.E.; Sunde, Erling; Sørensen, Nils Andreas, Enthalpies of Vaporization of Organic Compounds. IV. Alkyl Nitriles., Acta Chem. Scand., 1970, 24, 145-149, https://doi.org/10.3891/acta.chem.scand.24-0145 . [all data]

Dreisbach and Shrader, 1949
Dreisbach, R.R.; Shrader, S.A., Vapor Pressure--Temperature Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2879-2880, https://doi.org/10.1021/ie50480a054 . [all data]

Dreisbach and Martin, 1949, 2
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2875-2878, https://doi.org/10.1021/ie50480a053 . [all data]

Emel'yanenko, Verevkin, et al., 2005
Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Koutek, Bohumir; Doubsky, Jan, Vapour pressures and enthalpies of vapourization of a series of the linear aliphatic nitriles, The Journal of Chemical Thermodynamics, 2005, 37, 1, 73-81, https://doi.org/10.1016/j.jct.2004.08.004 . [all data]

Heim, 1933
Heim, G., Bull. Soc. Chim. Belg., 1933, 42, 467. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Meyer and Hotz, 1973
Meyer, Edwin F.; Hotz, Roger D., High-precision vapor-pressure data for eight organic compounds, J. Chem. Eng. Data, 1973, 18, 4, 359-362, https://doi.org/10.1021/je60059a008 . [all data]

Meyer, Renner, et al., 1971
Meyer, Edwin F.; Renner, Terrence A.; Stec, Kenneth S., Cohesive energies in polar organic liquids. II. n-Alkane nitriles and the 1-chloro alkanes, J. Phys. Chem., 1971, 75, 5, 642-648, https://doi.org/10.1021/j100675a008 . [all data]


Notes

Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References