Aniline

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas87.03 ± 0.88kJ/molCcbHatton, Hildenbrand, et al., 1962ALS
Δfgas82.4kJ/molCcbVriens and Hill, 1952ALS
Δfgas83.2kJ/molN/ACole and Gilbert, 1951Value computed using ΔfHliquid° value of 30.8 kj/mol from Cole and Gilbert, 1951 and ΔvapH° value of 52.4 kj/mol from Vriens and Hill, 1952.; DRB
Δfgas81. ± 3.kJ/molCcbAnderson and Gilbert, 1942%hf calculated possible error by author; ALS
Δfgas85.4kJ/molN/ALemoult, 1907Value computed using ΔfHliquid° value of 33.0 kj/mol from Lemoult, 1907 and ΔvapH° value of 52.4 kj/mol from Vriens and Hill, 1952.; DRB

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid31.3 ± 0.84kJ/molCcbHatton, Hildenbrand, et al., 1962ALS
Δfliquid30.kJ/molCcbVriens and Hill, 1952ALS
Δfliquid30.8kJ/molCmCole and Gilbert, 1951ALS
Δfliquid33.kJ/molCcbLemoult, 1907ALS
Quantity Value Units Method Reference Comment
Δcliquid-3393.1 ± 1.0kJ/molCcbHatton, Hildenbrand, et al., 1962ALS
Δcliquid-3392.kJ/molCcbVriens and Hill, 1952ALS
Δcliquid-3392.3kJ/molCmCole and Gilbert, 1951ALS
Δcliquid-3391. ± 13.kJ/molCcbAnderson and Gilbert, 1942%hf calculated possible error by author; ALS
Δcliquid-3411.kJ/molCcbLemoult, 1907ALS
Quantity Value Units Method Reference Comment
liquid191.30J/mol*KN/AHatton, Hildenbrand, et al., 1962DH
liquid191.6J/mol*KN/AParks, Huffman, et al., 1933Extrapolation below 90 K, 45.27 J/mol*K.; DH
Quantity Value Units Method Reference Comment
Δcsolid-3391.kJ/molCcbWillis, 1947ALS

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
194.1298.Lesbats and Lichanot, 1987T = 200 to 300 K.; DH
191.01298.15Nichols and Wads, 1975DH
193.7298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
192.05298.15Hatton, Hildenbrand, et al., 1962T = 15 to 300 K. Cp(liq, cal/mol·K) = 33.71 + 0.0409T (15 to 300 K).; DH
192.0293.Crtzen, Jost, et al., 1957DH
197.5323.Hough, Mason, et al., 1950T = 323 to 453 K.; DH
109.20267.3Ziegler and Andrews, 1942T = 40.84 K.; DH
183.7288.Radulescu and Jula, 1934DH
178.8298.15Ferguson and Miller, 1933T = 293 to 323 K. Data calculated from equation.; DH
190.92298.2Parks, Huffman, et al., 1933T = 94 to 298 K. Value is unsmoothed experimental datum.; DH
193.38298.2Lang, 1928T = 5 to 60°C.; DH
192.5298.von Reis, 1881T = 290 to 465 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil457. ± 2.KAVGN/AAverage of 46 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus267.0 ± 0.3KAVGN/AAverage of 19 out of 24 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple267.13KN/AHatton, Hildenbrand, et al., 1962, 2Uncertainty assigned by TRC = 0.02 K; from plot of 1/f vs T; TRC
Ttriple267.300KN/AZiegler and Andrews, 1942, 2Uncertainty assigned by TRC = 0.2 K; TRC
Ttriple266.9KN/AParks, Huffman, et al., 1933, 2Uncertainty assigned by TRC = 0.1 K; TRC
Quantity Value Units Method Reference Comment
Tc698.8 ± 0.4KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Pc53.1 ± 0.2barAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
ρc3.48mol/lN/ALagutkin and Kuropatkin, 1981Uncertainty assigned by TRC = 0.05 mol/l; calculated from corr. Zc, and lit. values of Tc and Pc; TRC
Quantity Value Units Method Reference Comment
Zc0.26noneN/ALagutkin and Kuropatkin, 1981Uncertainty assigned by TRC = 0.003 none; Correlation based on literature values of 2nd vireal coeff.; TRC
Quantity Value Units Method Reference Comment
Δvap54. ± 4.kJ/molAVGN/AAverage of 7 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
51.0 ± 0.2360.EBSteele, Chirico, et al., 2002Based on data from 350. to 499. K.; AC
48.0 ± 0.2400.EBSteele, Chirico, et al., 2002Based on data from 350. to 499. K.; AC
45.2 ± 0.2440.EBSteele, Chirico, et al., 2002Based on data from 350. to 499. K.; AC
42.2 ± 0.4480.EBSteele, Chirico, et al., 2002Based on data from 350. to 499. K.; AC
45.8444.N/ALee, Chen, et al., 1992Based on data from 421. to 591. K.; AC
52.2288.AStephenson and Malanowski, 1987Based on data from 273. to 338. K.; AC
53.6319.AStephenson and Malanowski, 1987Based on data from 304. to 485. K.; AC
48.6388.AStephenson and Malanowski, 1987Based on data from 373. to 458. K.; AC
46.3470.AStephenson and Malanowski, 1987Based on data from 455. to 523. K.; AC
42.44457.2N/AMajer and Svoboda, 1985 
51.4350.N/AMaher and Smith, 1979Based on data from 313. to 386. K.; AC
52.9293.N/ARavdel and Danilov, 1968Based on data from 288. to 298. K.; AC
54.0319.N/AHatton, Hildenbrand, et al., 1962Based on data from 304. to 457. K.; AC
53.0333.CHatton, Hildenbrand, et al., 1962AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
298. to 333.80.660.3744699.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
304. to 457.4.345411661.858-74.048Hatton, Hildenbrand, et al., 1962Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
10.539267.13Hatton, Hildenbrand, et al., 1962DH
10.54267.1Ahmed and Eades, 1972See also Domalski and Hearing, 1996.; AC
10.92267.3Ziegler and Andrews, 1942AC
10.556266.8Parks, Huffman, et al., 1933DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
39.57266.8Parks, Huffman, et al., 1933DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Bromine anion + Aniline = (Bromine anion • Aniline)

By formula: Br- + C6H7N = (Br- • C6H7N)

Quantity Value Units Method Reference Comment
Δr61.1 ± 7.5kJ/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B,M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26. ± 4.2kJ/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

C6H6N- + Hydrogen cation = Aniline

By formula: C6H6N- + H+ = C6H7N

Quantity Value Units Method Reference Comment
Δr1540.5 ± 1.3kJ/molD-EAWren, Vogelhuber, et al., 2012gas phase; B
Δr1533. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1510.0 ± 2.8kJ/molH-TSWren, Vogelhuber, et al., 2012gas phase; B
Δr1502. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

C9H13N+ + Aniline = (C9H13N+ • Aniline)

By formula: C9H13N+ + C6H7N = (C9H13N+ • C6H7N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr55.6kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr(110.)J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.283.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C7H9N+ + Aniline = (C7H9N+ • Aniline)

By formula: C7H9N+ + C6H7N = (C7H9N+ • C6H7N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr69.9kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr38.kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C8H11N+ + Aniline = (C8H11N+ • Aniline)

By formula: C8H11N+ + C6H7N = (C8H11N+ • C6H7N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr59.4kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr27.kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Fluorine anion + Aniline = (Fluorine anion • Aniline)

By formula: F- + C6H7N = (F- • C6H7N)

Quantity Value Units Method Reference Comment
Δr131. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr97.9 ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

C6H7N+ + Aniline = (C6H7N+ • Aniline)

By formula: C6H7N+ + C6H7N = (C6H7N+ • C6H7N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr73.2kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

Aniline + Phthalic anhydride = Benzoic acid, 2-[(phenylamino)carbonyl]-

By formula: C6H7N + C8H4O3 = C14H11NO3

Quantity Value Units Method Reference Comment
Δr-53.5kJ/molKinKalnin'sh, 1988liquid phase; solvent: Acetonitrile; ALS
Δr-54.4kJ/molKinPravednikov, Kardash, et al., 1973solid phase; solvent: Tetrahydrofuran; ALS

Aniline, N-methyl- = 0.5Benzenamine, N,N-dimethyl- + 0.5Aniline

By formula: C7H9N = 0.5C8H11N + 0.5C6H7N

Quantity Value Units Method Reference Comment
Δr-3.kJ/molEqkMatvienko, Kachurin, et al., 1982liquid phase; Methansulfonic acid; ALS
Δr-4.kJ/molKinKachurin, Matvienko, et al., 1979liquid phase; ALS

Potassium ion (1+) + Aniline = (Potassium ion (1+) • Aniline)

By formula: K+ + C6H7N = (K+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr95.4kJ/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr99.2J/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

Benzoyl iodide + Aniline = Hydrogen iodide + Benzamide, N-phenyl-

By formula: C7H5IO + C6H7N = HI + C13H11NO

Quantity Value Units Method Reference Comment
Δr-166. ± 2.kJ/molCacKiselev, Khuzyasheva, et al., 1979liquid phase; solvent: Benzene; ALS

Benzoyl bromide + Aniline = Hydrogen bromide + Benzamide, N-phenyl-

By formula: C7H5BrO + C6H7N = HBr + C13H11NO

Quantity Value Units Method Reference Comment
Δr-162. ± 0.8kJ/molCacKiselev, Khuzyasheva, et al., 1979liquid phase; solvent: Benzene; ALS

Aniline + Benzoyl chloride = Hydrogen chloride + Benzamide, N-phenyl-

By formula: C6H7N + C7H5ClO = HCl + C13H11NO

Quantity Value Units Method Reference Comment
Δr-149. ± 0.8kJ/molCacKiselev, Khuzyasheva, et al., 1979liquid phase; solvent: Benzene; ALS

Acetamide, N-phenyl- + Water = Aniline + Acetic acid

By formula: C8H9NO + H2O = C6H7N + C2H4O2

Quantity Value Units Method Reference Comment
Δr-42.0 ± 0.3kJ/molCmWadso, 1965solid phase; Heat of hydrolysis; ALS

Benzene, 1-isocyanato-4-nitro- + Aniline = N-(4-Nitrophenyl)-N'-phenyl-urea

By formula: C7H4N2O3 + C6H7N = C13H11N3O3

Quantity Value Units Method Reference Comment
Δr-83.8 ± 0.3kJ/molCmKiselev, Malkov, et al., 1989liquid phase; solvent: Dioxane; #TDE; ALS

Cyclohexane, isocyanato- + Aniline = Urea, N-cyclohexyl-N'-phenyl-

By formula: C7H11NO + C6H7N = C13H18N2O

Quantity Value Units Method Reference Comment
Δr-98.4 ± 1.1kJ/molCmKiselev, Malkov, et al., 1989liquid phase; solvent: Dioxane; ALS

2-Propanol, 1-phenoxy-3-(phenylamino)- = Oxirane, (phenoxymethyl)- + Aniline

By formula: C15H17NO2 = C9H10O2 + C6H7N

Quantity Value Units Method Reference Comment
Δr113. ± 2.kJ/molCmKuznetsova, Rakova, et al., 1975solid phase; solvent: DMF; ALS

Benzene, isocyanato- + Aniline = Urea, N,N-diphenyl-

By formula: C7H5NO + C6H7N = C13H12N2O

Quantity Value Units Method Reference Comment
Δr-82.5 ± 2.0kJ/molCmKiselev, Malkov, et al., 1989liquid phase; solvent: Dioxane; ALS

Urea, N,N'-diphenyl- = Benzene, isocyanato- + Aniline

By formula: C13H12N2O = C7H5NO + C6H7N

Quantity Value Units Method Reference Comment
Δr181.7 ± 4.2kJ/molEqkChimishkyan, Svetlova, et al., 1984solid phase; Dissociation; ALS

Iodide + Aniline = (Iodide • Aniline)

By formula: I- + C6H7N = (I- • C6H7N)

Quantity Value Units Method Reference Comment
Δr54.0 ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

1-[1,2,4]Triazol-1-ylethanone + Aniline = Acetamide, N-phenyl- + 1H-1,2,4-Triazole

By formula: C4H5N3O + C6H7N = C8H9NO + C2H3N3

Quantity Value Units Method Reference Comment
Δr-72.3 ± 0.3kJ/molCmWadso, 1962solid phase; ALS

1-Acetyl-1H-tetrazole + Aniline = Acetamide, N-phenyl- + 1H-Tetrazole

By formula: C3H4N4O + C6H7N = C8H9NO + CH2N4

Quantity Value Units Method Reference Comment
Δr-84.6 ± 0.3kJ/molCmWadso, 1962solid phase; ALS

Acetic anhydride + Aniline = Acetamide, N-phenyl- + Acetic acid

By formula: C4H6O3 + C6H7N = C8H9NO + C2H4O2

Quantity Value Units Method Reference Comment
Δr-100.9 ± 0.3kJ/molCmWadso, 1962liquid phase; ALS

Benzene, isocyanato- + Aniline = Urea, N,N'-diphenyl-

By formula: C7H5NO + C6H7N = C13H12N2O

Quantity Value Units Method Reference Comment
Δr-89.1 ± 5.1kJ/molCmPannone and Macosko, 1987liquid phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C6H7N+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)7.720 ± 0.002eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)882.5kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity850.6kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
7.736 ± 0.008PEMeek, Sekreta, et al., 1985LBLHLM
7.720 ± 0.0002PIHager, Smith, et al., 1985LBLHLM
7.720 ± 0.002SSmith, Hager, et al., 1984LBLHLM
~7.48PEKlasinc, Kovac, et al., 1983LBLHLM
8.0PEKimura, Katsumata, et al., 1981LLK
8.27 ± 0.05EIZaretskii, Oren, et al., 1976LLK
7.80PEBehan, Johnstone, et al., 1976LLK
8.35EIBaldwin, Loudon, et al., 1976LLK
7.71 ± 0.01PEDebies and Rabalais, 1974LLK
7.65 ± 0.02PEMaier and Turner, 1973LLK
7.6 ± 0.1EIGilbert, Leach, et al., 1973LLK
7.71PEDebies and Rabalais, 1973LLK
7.66PECowling and Johnstone, 1973LLK
7.63EICooks, Bertrand, et al., 1973LLK
7.89 ± 0.03EIJohnstone and Mellon, 1972LLK
8.1 ± 0.1EIGross, 1972LLK
7.70 ± 0.01PIPotapov and Iskakov, 1971LLK
7.89EIJohnstone, Mellon, et al., 1971LLK
7.61 ± 0.05SIZandberg and Rasulev, 1969RDSH
7.68PEEland, 1969RDSH
7.67 ± 0.03PIAkopyan and Vilesov, 1964RDSH
7.7PITerenin, 1961RDSH
7.70 ± 0.02PIWatanabe and Mottl, 1957RDSH
7.69 ± 0.02PIVilesov and Terenin, 1957RDSH
8.05PEFurin, Sultanov, et al., 1987Vertical value; LBLHLM
8.02PEKlasinc, Kovac, et al., 1983Vertical value; LBLHLM
8.04PEMeeks, Wahlborg, et al., 1981Vertical value; LLK
8.05PEPalmer, Moyes, et al., 1979Vertical value; LLK
8.03PEKobayashi, 1978Vertical value; LLK
8.05PEKobayashi and Nagakura, 1974Vertical value; LLK
8.10PEHaink, Adams, et al., 1974Vertical value; LLK
8.02PEDebies and Rabalais, 1973Vertical value; LLK
8.05PEKobayashi and Nagakura, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C4H4N+12.3 ± 0.1?PIAkopyan and Vilesov, 1964RDSH
C5H5+15.2 ± 0.2CHN+HEITajima and Tsuchiya, 1973LLK
C5H5+15.24CHN+HEIOccolowitz and White, 1968RDSH
C5H6+11.3 ± 0.1CHNTRPILifshitz and Malinovich, 1984LBLHLM
C5H6+11.3 ± 0.2CHNEILifshitz, Gotchiguian, et al., 1983LBLHLM
C5H6+12.77 ± 0.05CHNEIZaretskii, Oren, et al., 1976LLK
C5H6+12.13 ± 0.06CHNEIBentley, Johnstone, et al., 1973LLK
C5H6+12.0 ± 0.1?EIGross, 1972LLK
C5H6+12.3 ± 0.1CHNPIAkopyan and Vilesov, 1964RDSH

De-protonation reactions

C6H6N- + Hydrogen cation = Aniline

By formula: C6H6N- + H+ = C6H7N

Quantity Value Units Method Reference Comment
Δr1540.5 ± 1.3kJ/molD-EAWren, Vogelhuber, et al., 2012gas phase; B
Δr1533. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1510.0 ± 2.8kJ/molH-TSWren, Vogelhuber, et al., 2012gas phase; B
Δr1502. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + Aniline = (Bromine anion • Aniline)

By formula: Br- + C6H7N = (Br- • C6H7N)

Quantity Value Units Method Reference Comment
Δr61.1 ± 7.5kJ/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B,M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26. ± 4.2kJ/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

C6H7N+ + Aniline = (C6H7N+ • Aniline)

By formula: C6H7N+ + C6H7N = (C6H7N+ • C6H7N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr73.2kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C7H9N+ + Aniline = (C7H9N+ • Aniline)

By formula: C7H9N+ + C6H7N = (C7H9N+ • C6H7N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr69.9kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr38.kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C8H11N+ + Aniline = (C8H11N+ • Aniline)

By formula: C8H11N+ + C6H7N = (C8H11N+ • C6H7N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr59.4kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr27.kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C9H13N+ + Aniline = (C9H13N+ • Aniline)

By formula: C9H13N+ + C6H7N = (C9H13N+ • C6H7N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr55.6kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr(110.)J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.283.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Fluorine anion + Aniline = (Fluorine anion • Aniline)

By formula: F- + C6H7N = (F- • C6H7N)

Quantity Value Units Method Reference Comment
Δr131. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr97.9 ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

Iodide + Aniline = (Iodide • Aniline)

By formula: I- + C6H7N = (I- • C6H7N)

Quantity Value Units Method Reference Comment
Δr54.0 ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

Potassium ion (1+) + Aniline = (Potassium ion (1+) • Aniline)

By formula: K+ + C6H7N = (K+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr95.4kJ/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr99.2J/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1998.
NIST MS number 290555

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Ramart-Lucas, Hoch, et al., 1949
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 168
Instrument n.i.g.
Melting point -6.0
Boiling point 184.1

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-101150.939.1Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryOV-101180.952.6Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryHP-160.966.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-160.967.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-1100.968.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-1100.968.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
PackedApolane130.939.Dutoit, 1991Column length: 3.7 m
PackedSE-30180.983.Dolecka, Raczynska, et al., 1988He, Chromosorb W AW; Column length: 2. m
PackedSE-30180.995.Oszczapowicz, Osek, et al., 1985N2, Chromosorb A AW; Column length: 3. m
PackedSE-30180.995.Oszczapowicz, Osek, et al., 1984N2, Chromosorb W AW; Column length: 3. m
PackedApiezon L180.999.Vernon and Edwards, 1975N2, Celite; Column length: 1. m

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M150.1752.0Ellis and Still, 1979Chromosorb W, AW-DMCS
PackedCarbowax 20M165.1764.5Ellis and Still, 1979, 2Chromosorb W, AW-DMCS
PackedPEG-2000150.1717.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.1754.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000180.1747.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.1759.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.1761.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-20M210.1766.7Still, Evans, et al., 1972Chromosorb G; Column length: 3. m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1939.2Sun and Stremple, 200330. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 40. C; Tend: 325. C
CapillarySE-54980.Li, Wang, et al., 1998H2, 35. C @ 3. min, 4. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tend: 250. C
CapillaryOV-1945.6Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C
PackedSE-30955.Peng, Ding, et al., 1988He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m
CapillaryDB-5971.Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySE-54979.Li, Wang, et al., 1998H2; Column length: 25. m; Column diameter: 0.31 mm; Program: not specified
Capillary5 % Phenyl methyl siloxane977.Yasuhara, Shiraishi, et al., 199725. m/0.31 mm/0.52 μm, He; Program: 50C(2min) => (20C/min) => 120C => (7C/min) => 310C(10min)
CapillaryMethyl Silicone955.Peng, Yang, et al., 1991Program: not specified

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPolydimethyl siloxane105.954.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane75.947.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane90.950.Tello, Lebron-Aguilar, et al., 2009 
CapillaryMethyl Silicone100.952.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.958.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone140.964.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone80.947.Lebrón-Aguilar, Quintanilla-López, et al., 2007 

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryTR-1946.Gruzdev, Alferova, et al., 201130. m/0.32 mm/0.25 μm, Helium, 5. K/min; Tstart: 50. C; Tend: 300. C
CapillaryTR-1945.Gruzdev, Alferova, et al., 2011, 230. m/0.32 mm/0.25 μm, Helium, 5. K/min; Tstart: 50. C; Tend: 300. C
CapillaryTR-1946.Gruzdev, Filippova, et al., 201130. m/0.32 mm/0.25 μm, Helium, 5. K/min; Tstart: 50. C; Tend: 300. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-1963.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1710.Peng, Yang, et al., 1991, 2Program: not specified
CapillaryDB-Wax1740.Peng, Yang, et al., 1991, 2Program: not specified

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5155.33Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hatton, Hildenbrand, et al., 1962
Hatton, W.E.; Hildenbrand, D.L.; Sinke, G.C.; Stull, D.R., Chemical thermodynamic properties of aniline, J. Chem. Eng. Data, 1962, 7, 229-231. [all data]

Vriens and Hill, 1952
Vriens, G.N.; Hill, A.G., Equilibria of several reactions of aromatic amines, Ind. Eng. Chem., 1952, 44, 2732-27. [all data]

Cole and Gilbert, 1951
Cole, L.G.; Gilbert, E.C., The heats of combustion of some nitrogen compounds and the apparent energy of the N-N bond, J. Am. Chem. Soc., 1951, 73, 5423-5427. [all data]

Anderson and Gilbert, 1942
Anderson, C.M.; Gilbert, E.C., The apparent energy of the N-N bond as calculated from heats of combustion, J. Am. Chem. Soc., 1942, 64, 2369-2372. [all data]

Lemoult, 1907
Lemoult, M.P., Recherches theoriques et experimentales sur les chaleurs de combustion et de formation des composes organiques, Ann. Chim. Phys., 1907, 12, 395-432. [all data]

Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal data on organic compounds. XI. The heat capacities, entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]

Willis, 1947
Willis, J.B., The heats of combustion of some organic bases and their salts. The resonance energies of acridine and phenazine, Trans. Faraday Soc., 1947, 43, 97-102. [all data]

Lesbats and Lichanot, 1987
Lesbats, C.; Lichanot, A., Capacites calorifiques de durcisseurs amines et resines epoxydes, Thermochim. Acta, 1987, 109, 317-329. [all data]

Nichols and Wads, 1975
Nichols, N.; Wads, I., Thermochemistry of solutions of biochemical model compounds. 3. Some benzene derivatives in aqueous solution, J. Chem. Thermodynam., 1975, 7, 329-336. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Crtzen, Jost, et al., 1957
Crtzen, J.L.; Jost, W.; Sieg, L., Gleichgewichtsmessungen im System Anilin-N-Methylanilin, N-N-Dimethylanilin, 1,2-Äthandiol, Z. Elektrochem., 1957, 61, 230-246. [all data]

Hough, Mason, et al., 1950
Hough, E.W.; Mason, D.M.; Sage, B.H., Heat capacities of several organic liquids, J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]

Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H., The heat capacity of benzene-d6, J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]

Radulescu and Jula, 1934
Radulescu, D.; Jula, O., Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen, Z. Phys. Chem., 1934, B26, 390-393. [all data]

Ferguson and Miller, 1933
Ferguson, A.; Miller, J.T., A method for the determination of the specific heats of liquids, and a determination of the specific heats of aniline and benzene over the approximate range 20°C to 50°C, Proc. Phys. Soc. London, 1933, 45, 194-207. [all data]

Lang, 1928
Lang, H.R., On the measurement of the variation of the specific heat of aniline with temperature, using the continuous flow electric method, Proc. Roy. Soc. (London), 1928, A118, 138-156. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Hatton, Hildenbrand, et al., 1962, 2
Hatton, W.E.; Hildenbrand, D.L.; Sinke, G.C.; Stull, D.R., Chemical Thermodynamic Properties of Aniline, J. Chem. Eng. Data, 1962, 7, 229. [all data]

Ziegler and Andrews, 1942, 2
Ziegler, W.T.; Andrews, D.H., The heat capacity of benzene-d6, J. Am. Chem. Soc., 1942, 64, 2482. [all data]

Parks, Huffman, et al., 1933, 2
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal Data on Organic Compounds. XI. The Heat Capacities, Entropies and Free Energies of Ten Compounds Containing Oxygen or Nitrogen, J. Am. Chem. Soc., 1933, 55, 7, 2733, https://doi.org/10.1021/ja01334a016 . [all data]

Lagutkin and Kuropatkin, 1981
Lagutkin, O.D.; Kuropatkin, E.I., Critical coefficient of compressibility and critical dens. of aniline, Zh. Fiz. Khim., 1981, 55, 1329. [all data]

Steele, Chirico, et al., 2002
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A., Vapor Pressure, Heat Capacity, and Density along the Saturation Line: Measurements for Benzenamine, Butylbenzene, sec -Butylbenzene, tert -Butylbenzene, 2,2-Dimethylbutanoic Acid, Tridecafluoroheptanoic Acid, 2-Butyl-2-ethyl-1,3-propanediol, 2,2,4-Trimethyl-1,3-pentanediol, and 1-Chloro-2-propanol, J. Chem. Eng. Data, 2002, 47, 4, 648-666, https://doi.org/10.1021/je010083e . [all data]

Lee, Chen, et al., 1992
Lee, Chang Ha; Chen, Quen; Mohamed, Rahoma S.; Holder, Gerald D., Vapor-liquid equilibria in the system of toluene/aniline, aniline/naphthalene, and naphthalene/quinoline, J. Chem. Eng. Data, 1992, 37, 2, 179-183, https://doi.org/10.1021/je00006a011 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Maher and Smith, 1979
Maher, Patrick J.; Smith, Buford D., A new total pressure vapor-liquid equilibrium apparatus. The ethanol + aniline system at 313.15, 350.81, and 386.67 K, J. Chem. Eng. Data, 1979, 24, 1, 16-22, https://doi.org/10.1021/je60080a022 . [all data]

Ravdel and Danilov, 1968
Ravdel, A.A.; Danilov, V.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1968, 11, 6, 642. [all data]

Ahmed and Eades, 1972
Ahmed, A.M.I.; Eades, R.G., Proton relaxation in solid aniline and some methyl derivatives, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 2017, https://doi.org/10.1039/f29726802017 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Wren, Vogelhuber, et al., 2012
Wren, S.W.; Vogelhuber, K.M.; Ichino, T.; Stanton, J.F.; Lineberger, W.C., Photoelectron Spectroscopy of Anilinide and Acidity of Aniline, J. Phys. Chem. A, 2012, 116, 12, 3118-3123, https://doi.org/10.1021/jp211463r . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Kalnin'sh, 1988
Kalnin'sh, K.K., Autocatalysis and effects of the solvent in the reaction of phthalic anhydride with aniline derivatives, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 1768-1773. [all data]

Pravednikov, Kardash, et al., 1973
Pravednikov, A.N.; Kardash, I.Ye.; Glukhoyedov, N.P.; Ardashnikov, A.Ya., Some features of the synthesis of heat-resistant heterocyclic polymers, Polym. Sci. USSR, 1973, 15, 399-410. [all data]

Matvienko, Kachurin, et al., 1982
Matvienko, N.M.; Kachurin, O.I.; Chekhuta, V.G., Kinetics and equilibrium of the transalkylation reaction of N-methylarylamines, Russ. Chem. Rev., 1982, 48, 42-45. [all data]

Kachurin, Matvienko, et al., 1979
Kachurin, O.I.; Matvienko, N.M.; Chekhuta, V.G., Disproportionation of N-methylaniline, Russ. Chem. Rev., 1979, 45, 43-47. [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Kiselev, Khuzyasheva, et al., 1979
Kiselev, V.D.; Khuzyasheva, d.G.; Konovalov, A.I., Thermochemical study of the acylation of para-substituted anilines, J. Gen. Chem. USSR, 1979, 49, 2273-2276. [all data]

Wadso, 1965
Wadso, I., Thermochemical properties of diacetimide, N-butyldiacetimide and N-phenyldiacetimide, Acta Chem. Scand., 1965, 19, 1079-1087. [all data]

Kiselev, Malkov, et al., 1989
Kiselev, V.D.; Malkov, V.B.; Murzin, D.G.; Shakirov, I.M.; Konovalov, A.I., Thermochemical study of the reaction of isocyanate with amines, Dokl. Phys. Chem. (Engl. Transl.), 1989, 308, 711-713, In original 111. [all data]

Kuznetsova, Rakova, et al., 1975
Kuznetsova, V.P.; Rakova, G.V.; Miroshnichenko, E.A.; Lebedev, Yu.A.; Enikolopyan, N.S., Thermochemical study of the interaction of epoxy compounds with primary amines, Dokl. Phys. Chem. (Engl. Transl.), 1975, 225, 1231-1234. [all data]

Chimishkyan, Svetlova, et al., 1984
Chimishkyan, A.L.; Svetlova, L.P.; Leonova, T.V.; Gluyaev, N.D., Thermal decomposition of substituted ureas, J. Gen. Chem. USSR, 1984, 54, 1317-1320. [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Wadso, 1962
Wadso, I., Heats of aminolysis and hydrolysis of some N-acetyl compounds and of acetic anhydride, Acta Chem. Scand., 1962, 16, 471-478. [all data]

Pannone and Macosko, 1987
Pannone, M.C.; Macosko, C.W., Kinetics of isocyanate amine reactions, J. Appl. Polym. Sci., 1987, 34, 2409-2432. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Meek, Sekreta, et al., 1985
Meek, J.T.; Sekreta, E.; Wilson, W.; Viswanathan, K.S.; Reilly, J.P., The laser photoelectron spectrum of gas phase aniline, J. Chem. Phys., 1985, 82, 1741. [all data]

Hager, Smith, et al., 1985
Hager, J.; Smith, M.; Wallace, S., Autoionizing Rydberg structure observed in the vibrationally selective, two-color threshold photoionization spectrum of jet-cooled aniline, J. Chem. Phys., 1985, 83, 4820. [all data]

Smith, Hager, et al., 1984
Smith, M.A.; Hager, J.W.; Wallace, S.C., Two color photoionization spectroscopy of jet cooled aniline: Vibrational frequencies of the aniline X2B1 radical cation, J. Chem. Phys., 1984, 80, 3097. [all data]

Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H., Photoelectron spectra of acenes. Electronic structure and substituent effects, Pure Appl. Chem., 1983, 55, 289. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Zaretskii, Oren, et al., 1976
Zaretskii, Z.V.I.; Oren, D.; Kelner, L., Automatic method for the measurement of the electron impact ionization and appearance potentials, Appl. Spectrosc., 1976, 30, 366. [all data]

Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W., An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes, Org. Mass Spectrom., 1976, 11, 207. [all data]

Baldwin, Loudon, et al., 1976
Baldwin, M.A.; Loudon, A.G.; Maccoll, A.; Webb, K.S., The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds, Org. Mass Spectrom., 1976, 11, 1181. [all data]

Debies and Rabalais, 1974
Debies, T.P.; Rabalais, J.W., Photoelectron spectra of substituted benzenes. III. Bonding with Group V substituents, Inorg. Chem., 1974, 13, 308. [all data]

Maier and Turner, 1973
Maier, J.P.; Turner, D.W., Steric inhibition of resonance studied by molecular photoelectron spectroscopy Part 3. Anilines, Phenols and Related Compounds, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 521. [all data]

Gilbert, Leach, et al., 1973
Gilbert, J.R.; Leach, W.P.; Miller, J.R., Ionisation appearance potential measurements in arene chromium tricarbonyls, J. Organomet. Chem., 1973, 49, 219. [all data]

Debies and Rabalais, 1973
Debies, T.P.; Rabalais, J.W., Photoelectron spectra of substituted benzenes. II. Seven valence electron substituents, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 355. [all data]

Cowling and Johnstone, 1973
Cowling, S.A.; Johnstone, R.A.W., Photoelectron spectroscopy: The effects of steric inhibition to resonance in anilines, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 161. [all data]

Cooks, Bertrand, et al., 1973
Cooks, R.G.; Bertrand, M.; Beynon, J.H.; Rennekamp, M.E.; Setser, D.W., Energy partitioning data as an ion structure probe. Substituted anisoles, J. Am. Chem. Soc., 1973, 95, 1732. [all data]

Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A., Electron-impact ionization and appearance potentials, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]

Gross, 1972
Gross, M.L., Ion cyclotron resonance spectrometry. A means of evaluating 'kinetic shifts', Org. Mass Spectrom., 1972, 6, 827. [all data]

Potapov and Iskakov, 1971
Potapov, V.K.; Iskakov, L.I., Electronic structure and photoionization of aromatic amines, High Energy Chem., 1971, 5, 237, In original 264. [all data]

Johnstone, Mellon, et al., 1971
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., On-line computer methods used in conjunction with the measurement of ionization appearance potentials, Adv. Mass Spectrom., 1971, 5, 334. [all data]

Zandberg and Rasulev, 1969
Zandberg, E.Ya.; Rasulev, U.Kh., Surface ionization of aniline molecules, Zh. Tekhn. Fiz. 1968,38,1798 (Engl. Transl.: Soviet Phys. - Tech. Phys., 1969, 13, 1450). [all data]

Eland, 1969
Eland, J.H.D., Photoelectron spectra of conjugated hydrocarbons and heteromolecules, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]

Akopyan and Vilesov, 1964
Akopyan, M.E.; Vilesov, F.I., Excited states of positive ions and dissociative photoionization of aromatic amines, Dokl. Akad. Nauk SSSR, 1964, 158, 1386, In original 965. [all data]

Terenin, 1961
Terenin, A., Charge transfer in organic solids, induced by light, Proc. Chem. Soc., London, 1961, 321. [all data]

Watanabe and Mottl, 1957
Watanabe, K.; Mottl, J.R., Ionization potentials of ammonia and some amines, J. Chem. Phys., 1957, 26, 1773. [all data]

Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N., The photoionization of the vapors of certain organic compounds, Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]

Furin, Sultanov, et al., 1987
Furin, G.G.; Sultanov, A.S.; Furlei, I.I., Photoelectronic spectra of fluorine-containing aromatic amines, Dokl. Phys. Chem., 1987, 530. [all data]

Meeks, Wahlborg, et al., 1981
Meeks, J.; Wahlborg, A.; McGlynn, S.P., Photoelectron spectroscopy of carbonyls: Benzoic acid and its derivatives, J. Electron Spectrosc. Relat. Phenom., 1981, 22, 43. [all data]

Palmer, Moyes, et al., 1979
Palmer, M.H.; Moyes, W.; Spiers, M.; Ridyard, J.N.A., The electronic structure of substituted benzenes; a study of aniline, the toluidines, phenylenediamines and fluoroanilines by photoelectron spectroscopy and ab initio calculations, J. Mol. Struct., 1979, 53, 235. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S., Photoelectron spectra of substituted benzenes, Bull. Chem. Soc. Jpn., 1974, 47, 2563. [all data]

Haink, Adams, et al., 1974
Haink, H.J.; Adams, J.E.; Huber, J.R., The electronic structure of aromatic amines: photoelectron spectroscopy of diphenylamine, iminobibenzyl, acridan and carbazole, Ber. Bunsen-Ges. Phys. Chem., 1974, 78, 436. [all data]

Kobayashi and Nagakura, 1972
Kobayashi, T.; Nagakura, S., Photoelectron spectra of anilines, Chem. Lett., 1972, 1013. [all data]

Tajima and Tsuchiya, 1973
Tajima, S.; Tsuchiya, T., Energetics consideration of C5H5+ ions produced from various precursors by electron impact, Bull. Chem. Soc. Jpn., 1973, 46, 3291. [all data]

Occolowitz and White, 1968
Occolowitz, J.L.; White, G.L., Energetic considerations in the assignment of some fragment ion structures, Australian J. Chem., 1968, 21, 997. [all data]

Lifshitz and Malinovich, 1984
Lifshitz, C.; Malinovich, Y., Time resolved photoionization mass spectrometry in the millisecond range, Int. J. Mass Spectrom. Ion Processes, 1984, 60, 99. [all data]

Lifshitz, Gotchiguian, et al., 1983
Lifshitz, C.; Gotchiguian, P.; Roller, R., Time-dependent mass spectra and breakdown graphs. The kinetic shift in aniline, Chem. Phys. Lett., 1983, 95, 106. [all data]

Bentley, Johnstone, et al., 1973
Bentley, T.W.; Johnstone, R.A.W.; McMaster, B.N., Appearance potentials of metastable and normal ions and the kinetic shift, J. Chem. Soc., Chem. Commun., 1973, 510. [all data]

Ramart-Lucas, Hoch, et al., 1949
Ramart-Lucas, M.; Hoch, J.; Grumez, M., Deformation des orbites electroniques de l'azote par cyclisation (serie du benzotriazole et du phenyltriazole), Bull. Soc. Chim. Fr., 1949, 16, 447-454. [all data]

Cha and Lee, 1994
Cha, K.-W.; Lee, D.-J., Prediction of retention indices of various compounds in gas-liquid chromatography, J. Korean Chem. Soc., 1994, 38, 2, 108-120, retrieved from http://journal.kcsnet.or.kr/publi/dh/dh94n2/108.pdf. [all data]

Zhang, Li, et al., 1992
Zhang, M.J.; Li, S.D.; Chen, B.J., Compositional studies of high-temperature coal tar by GC/FTIR analysis of light oil fractions, Chromatographia, 1992, 33, 3/4, 138-146, https://doi.org/10.1007/BF02275894 . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Dolecka, Raczynska, et al., 1988
Dolecka, E.; Raczynska, E.D.; Drapala, T., Retention indices and basicity of N1N1-dimethyl-N2-phenylformamidines ortho-substituent effect, J. Chem. Soc. Perkin Trans. 2:, 1988, 3, 257-260, https://doi.org/10.1039/p29880000257 . [all data]

Oszczapowicz, Osek, et al., 1985
Oszczapowicz, J.; Osek, J.; Ciszkowski, K.; Krawczyk, W.; Ostrowski, M., Retention Indices of Dimethylbenzamidines and Benzylideneamines on a Non-Polar Column, J. Chromatogr., 1985, 330, 79-85, https://doi.org/10.1016/S0021-9673(01)81964-6 . [all data]

Oszczapowicz, Osek, et al., 1984
Oszczapowicz, J.; Osek, J.; Dolecka, E., Retention indices of dimethylformamidines, dimethylacetamidines and tetramethylguanidines on a non-polar column, J. Chromatogr., 1984, 315, 95-100, https://doi.org/10.1016/S0021-9673(01)90727-7 . [all data]

Vernon and Edwards, 1975
Vernon, F.; Edwards, G.T., Gas-liquid chromatography on fluorinated stationary phases. II. Fluorinated compounds containing a functional group, J. Chromatogr., 1975, 114, 1, 87-93, https://doi.org/10.1016/S0021-9673(00)85245-0 . [all data]

Ellis and Still, 1979
Ellis, T.S.; Still, R.H., Thermal degradation of polymers. XXI. Vacuum pyrolysis of poly(m-N,N-dimethylaminostyrene); the products volatile at pyrolysis temperature, liquid at room temperature, J. Appl. Polym. Sci., 1979, 23, 10, 2837-2854, https://doi.org/10.1002/app.1979.070231002 . [all data]

Ellis and Still, 1979, 2
Ellis, T.S.; Still, R.H., Thermal degradation of polymers. XXIII. Vacuum pyrolysis of poly(p-N,N-dimethylaminostyrene); the products volatile at pyrolysis temperature, liquid or gaseous at room temperature, J. Appl. Polym. Sci., 1979, 23, 10, 2871-2880, https://doi.org/10.1002/app.1979.070231004 . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Still, Evans, et al., 1972
Still, R.H.; Evans, M.B.; Whitehead, A., Thermal Degradation of Polymers. V. Vacuum Pyrolysis of Poly (p-N,N-dimethylaminostyrene) . The Products Volatile at Pyrolysis Temperature, Liquid or Gaseous at Room Temperature, J. Appl. Polym. Sci., 1972, 16, 12, 3207-3221, https://doi.org/10.1002/app.1972.070161213 . [all data]

Sun and Stremple, 2003
Sun, G.; Stremple, P., Retention index characterization of flavor, fragrance, and many other compounds on DB-1 and DB-XLB, 2003, retrieved from http://www.chem.agilent.com/cag/cabu/pdf/b-0279.pdf. [all data]

Li, Wang, et al., 1998
Li, W.; Wang, H.; Sun, Y.; Huang, A.; Sun, Y., Capillary gas chromatographic analysis of volatile components in goat feces, Fenxi Huaxue, 1998, 26, 8, 935-939. [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Rostad and Pereira, 1986
Rostad, C.E.; Pereira, W.E., Kovats and Lee retention indices determined by gas chromatography/mass spectrometry for organic compounds of environmental interest, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 6, 328-334, https://doi.org/10.1002/jhrc.1240090603 . [all data]

Yasuhara, Shiraishi, et al., 1997
Yasuhara, A.; Shiraishi, H.; Nishikawa, M.; Yamamoto, T.; Uehiro, T.; Nakasugi, O.; Okumura, T.; Kenmotsu, K.; Fukui, H.; Nagase, M.; Ono, Y.; Kawagoshi, Y.; Baba, K.; Noma, Y., Determination of organic components in leachates from hazardous waste disposal sites in Japan by gas chromatography-mass spectrometry, J. Chromatogr. A, 1997, 774, 1-2, 321-332, https://doi.org/10.1016/S0021-9673(97)00078-2 . [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Maltby, D., Prediction of retention indexes. III. Silylated derivatives of polar compounds, J. Chromatogr., 1991, 586, 1, 113-129, https://doi.org/10.1016/0021-9673(91)80029-G . [all data]

Tello, Lebron-Aguilar, et al., 2009
Tello, A.M.; Lebron-Aguilar, R.; Quintanilla-Lopez, J.E.; Santiuste, J.M., Isothermal retention indices on poly93-cyanopropylmethyl)siloxane stationary phases, J. Chromatogr. A, 2009, 1216, 10, 1630-1639, https://doi.org/10.1016/j.chroma.2008.10.025 . [all data]

Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M., Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases, J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025 . [all data]

Gruzdev, Alferova, et al., 2011
Gruzdev, I.V.; Alferova, M.V.; Kondratenok, B.M.; Zenkevich, I.G., Gas-chromatographic identification of chloro- and bromosubstituted anilines using retention indices, Rus. J. Anal. Chem., 2011, 66, 5, 519-524. [all data]

Gruzdev, Alferova, et al., 2011, 2
Gruzdev, I.V.; Alferova, M.V.; Kondratenok, B.M.; Zenkevich, I.G., Quantification of chloroanilines in drinking water by gas chromatography as bromo derivatives, Rus. J. Anal. Chem., 2011, 66, 10, 955-962, https://doi.org/10.1134/S1061934811100042 . [all data]

Gruzdev, Filippova, et al., 2011
Gruzdev, I.V.; Filippova, M.V.; Zenkevich, I.G.; Kondratenok, B.M., Identification of bromination products of chlorosubstituted anilines in aqueous media by using gas chromatography, Rus. J. Applied Chem., 2011, 84, 10, 1656-1667, https://doi.org/10.1134/S1070427211100132 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Peng, Yang, et al., 1991, 2
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References