Butanoic acid, methyl ester

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Van Den Dool and Kratz RI, polar column, custom temperature program

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Column type CapillaryCapillaryCapillaryCapillaryCapillary
Active phase Supelcowax-10Supelcowax-10StabilwaxStabilwaxStabilwax
Column length (m) 30.30.30.30.30.
Carrier gas HeHeHeHeHe
Substrate      
Column diameter (mm) 0.250.250.320.320.32
Phase thickness (μm) 0.250.251.1.1.
Program 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)40C(1min) => 10C/min => 120C => 15C/min => 200C (1min)40C(2min) => 5C/min => 100C => 4C/min => 230C (10min)40C(2min) => 5C/min => 100C => 4C/min => 230C (10min)40C(2min) => 5C/min => 100C => 4C/min => 230C(10min)
I 982.987.989.995.973.
ReferenceBianchi, Careri, et al., 2007Bianchi, Careri, et al., 2007Wang, Finn, et al., 2005Wang, Finn, et al., 2005Klesk and Qian, 2003
Comment MSDC-RI MSDC-RI MSDC-RI MSDC-RI MSDC-RI
Column type CapillaryCapillaryCapillary
Active phase HP-InnowaxSupelcowax-10FFAP
Column length (m) 60.60.50.
Carrier gas HeHeHe
Substrate    
Column diameter (mm) 0.250.250.25
Phase thickness (μm) 0.250.250.25
Program 32C(1.5min) => 3C/min => 40C (10min) => 3C/min => 200C (10min)40C => (6C/min) => 80C(6min) => (15C/min) => 200C(10min)20C (5min) => 2C/min => 70C => 4C/min => 210C
I 1001.965.971.
ReferenceIversen, Jakobsen, et al., 1998Cadwallader and Xu, 1994Yasuhara, 1987
Comment MSDC-RI MSDC-RI MSDC-RI

References

Go To: Top, Van Den Dool and Kratz RI, polar column, custom temperature program, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Wang, Finn, et al., 2005
Wang, Y.; Finn, C.; Qian, M.C., Impact of Growing Environment on Chickasaw Blackberry ( Rubus L.) Aroma Evaluated by Gas Chromatography Olfactometry Dilution Analysis, J. Agric. Food Chem., 2005, 53, 9, 3563-3571, https://doi.org/10.1021/jf048102m . [all data]

Klesk and Qian, 2003
Klesk, K.; Qian, M., Aroma extract dilution analysis of Cv. Marion (Rubus spp. hyb) and Cv. Evergreen (R. Iaciniatus L.) blackberries, J. Agric. Food Chem., 2003, 51, 11, 3436-3441, https://doi.org/10.1021/jf0262209 . [all data]

Iversen, Jakobsen, et al., 1998
Iversen, C.K.; Jakobsen, H.B.; Olsen, C.-E., Aroma changes during black currant (Ribes nigrum L.) nectar processing, J. Agric. Food Chem., 1998, 46, 3, 1132-1136, https://doi.org/10.1021/jf970513y . [all data]

Cadwallader and Xu, 1994
Cadwallader, K.R.; Xu, Y., Analysis of volatile components in fresh grapefruit juice by purge and trap/gas chromatography, J. Agric. Food Chem., 1994, 42, 3, 782-784, https://doi.org/10.1021/jf00039a036 . [all data]

Yasuhara, 1987
Yasuhara, A., Identification of Volatile Compounds in Poultry Manure by Gas Chromatography-Mass Spectrometry, J. Chromatogr., 1987, 387, 371-378, https://doi.org/10.1016/S0021-9673(01)94539-X . [all data]


Notes

Go To: Top, Van Den Dool and Kratz RI, polar column, custom temperature program, References