3-Hexanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas-79.54 ± 0.53kcal/molN/AWiberg, Wasserman, et al., 1984Value computed using ΔfHliquid° value of -390.3±0.88 kj/mol from Wiberg, Wasserman, et al., 1984 and ΔvapH° value of 57.5±2 kj/mol from sec-alkanol correlation.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-93.29 ± 0.21kcal/molCmWiberg, Wasserman, et al., 1984Heat of hydration, see Wiberg and Wasserman, 1981; ALS

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
64.357298.15Tanaka, Luo, et al., 1988DH
68.40298.Conti, Gianni, et al., 1976DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil407. ± 2.KAVGN/AAverage of 22 out of 23 values; Individual data points
Quantity Value Units Method Reference Comment
Tc582.4 ± 0.5KN/AGude and Teja, 1995 
Tc582.2KN/AQuadri, Khilar, et al., 1991Uncertainty assigned by TRC = 0.8 K; TRC
Tc582.58KN/ATeja, Lee, et al., 1989TRC
Tc582.48KN/AAnselme and Teja, 1988Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Pc33.2 ± 0.2atmN/AGude and Teja, 1995 
Pc33.16atmN/AQuadri, Khilar, et al., 1991Uncertainty assigned by TRC = 0.49 atm; TRC
Quantity Value Units Method Reference Comment
Vc0.383l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc2.61 ± 0.02mol/lN/AGude and Teja, 1995 
ρc2.61mol/lN/AAnselme and Teja, 1988Uncertainty assigned by TRC = 0.06 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap14.0 ± 0.1kcal/molGSKulikov, Verevkin, et al., 2001Based on data from 278. - 311. K.; AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
11.0369.AStephenson and Malanowski, 1987Based on data from 354. - 410. K.; AC
13.7295.AStephenson and Malanowski, 1987Based on data from 280. - 320. K.; AC
12.3348.N/ASachek, Markovnik, et al., 1984Based on data from 333. - 409. K.; AC
13.7295.N/ACabani, Conti, et al., 1975Based on data from 280. - 316. K.; AC
11.1353.IHovorka, Lankelma, et al., 1938Based on data from 298. - 408. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
298. - 411.6.15682662.26523.469Hovorka, Lankelma, et al., 1938Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H13O- + Hydrogen cation = 3-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr372.0 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr365.4 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

3-Hexanol = 1-Hexene + Water

By formula: C6H14O = C6H12 + H2O

Quantity Value Units Method Reference Comment
Δr7.68 ± 0.08kcal/molCmWiberg, Wasserman, et al., 1984liquid phase; Heat of hydration, see Wiberg and Wasserman, 1981; ALS

Acetic acid, trifluoro-, anhydride + 3-Hexanol = Trifluoroacetic acid + Hexan-3-yl trifluoroacetate

By formula: C4F6O3 + C6H14O = C2HF3O2 + C8H13F3O2

Quantity Value Units Method Reference Comment
Δr-22.15 ± 0.01kcal/molCmWiberg and Wasserman, 1981liquid phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
20. VN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi

Ionization energy determinations

IE (eV) Method Reference Comment
9.63 ± 0.03PEAshmore and Burgess, 1977LLK
10.15PEAshmore and Burgess, 1977Vertical value; LLK

De-protonation reactions

C6H13O- + Hydrogen cation = 3-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr372.0 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr365.4 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 19905

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg, Wasserman, et al., 1984
Wiberg, K.B.; Wasserman, D.J.; Martin, E., Enthalpies of hydration of alkenes. 2. The n-heptenes and n-pentenes, J. Phys. Chem., 1984, 88, 3684-3688. [all data]

Wiberg and Wasserman, 1981
Wiberg, K.B.; Wasserman, D.J., Enthalpies of hydration of alkenes. 1. The n-hexenes, J. Am. Chem. Soc., 1981, 103, 6563-6566. [all data]

Tanaka, Luo, et al., 1988
Tanaka, R.; Luo, B.; Benson, G.C.; Lu, B.C.-Y., Excess isobaric heat capacities and excess volumes of some hexanol + n-heptane mixtures, Thermochim. Acta, 1988, 127, 15-23. [all data]

Conti, Gianni, et al., 1976
Conti, G.; Gianni, P.; Matteoli, E.; Mengheri, M., Capacita termiche molari di alcuni composti organici mono- e bifunzionali nel liquido puro e in soluzione acquosa a 25C, Chim. Ind. (Milan), 1976, 58, 225. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Quadri, Khilar, et al., 1991
Quadri, S.K.; Khilar, K.C.; Kudchadker, A.P.; Patni, M.J., Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols, J. Chem. Thermodyn., 1991, 23, 67-76. [all data]

Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J., Correlation of the Critical Properties of Alkanes and Alkanols in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]

Anselme and Teja, 1988
Anselme, M.J.; Teja, A.S., Critical Temperatures and Densities of Isomeric Alkanols with Six to Ten Carbon Atoms, Fluid Phase Equilib., 1988, 40, 127-34. [all data]

Kulikov, Verevkin, et al., 2001
Kulikov, Dmitry; Verevkin, Sergey P.; Heintz, Andreas, Determination of Vapor Pressures and Vaporization Enthalpies of the Aliphatic Branched C 5 and C 6 Alcohols, J. Chem. Eng. Data, 2001, 46, 6, 1593-1600, https://doi.org/10.1021/je010187p . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Sachek, Markovnik, et al., 1984
Sachek, A.I.; Markovnik, V.S.; Peshchenko, A.D.; Shvaro, A.V.; Andreevskii, D.N., Khim. Prom-st. (Moscow), 1984, 337. [all data]

Cabani, Conti, et al., 1975
Cabani, Sergio; Conti, G.; Mollica, V.; Lepori, L., Thermodynamic study of dilute aqueous solutions of organic compounds. Part 4.---Cyclic and straight chain secondary alcohols, J. Chem. Soc., Faraday Trans. 1, 1975, 71, 0, 1943, https://doi.org/10.1039/f19757101943 . [all data]

Hovorka, Lankelma, et al., 1938
Hovorka, Frank; Lankelma, Herman P.; Stanford, Spencer C., Thermodynamic Properties of the Hexyl Alcohols. II. Hexanols-1, -2, -3 and 2-Methylpentanol-1 and -4, J. Am. Chem. Soc., 1938, 60, 4, 820-827, https://doi.org/10.1021/ja01271a018 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Ashmore and Burgess, 1977
Ashmore, F.S.; Burgess, A.R., Study of Some Medium Size Alcohols and Hydroperoxides by Photoelectron Spectroscopy, J. Chem. Soc. Faraday Trans. 2, 1977, 73, 1247. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References