Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

2-Hexanone

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Deltafgas-66.87 ± 0.26kcal/molCcbHarrop, Head, et al., 1970ht. of vaporization was from a private communication

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Deltafliquid-76.96 ± 0.24kcal/molCcbHarrop, Head, et al., 1970ht. of vaporization was from a private communication; ALS
Quantity Value Units Method Reference Comment
Deltacliquid-897.23 ± 0.23kcal/molCcbHarrop, Head, et al., 1970ht. of vaporization was from a private communication; Corresponding «DELTA»fliquid = -76.965 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid73.64cal/mol*KN/AAndon, Counsell, et al., 1970DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
51.00298.15Andon, Counsell, et al., 1970T = 10 to 380 K.; DH
50.98298.15Harrop, Head, et al., 1970DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny, director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil400. ± 2.KAVGN/AAverage of 35 out of 36 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus216.25KN/ATimmermans, 1921Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Ttriple217.69KN/AAndon, Counsell, et al., 1970, 2Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Tc586.6KN/APulliam, Gude, et al., 1994Uncertainty assigned by TRC = 0.4 K; by the sealed ampule method; TRC
Tc587.KN/AMajer and Svoboda, 1985 
Tc587.0KN/AAmbrose, Broderick, et al., 1974Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Pc32.77atmN/AAmbrose, Broderick, et al., 1974Uncertainty assigned by TRC = 0.79 atm; TRC
Quantity Value Units Method Reference Comment
rhoc2.67mol/lN/APulliam, Gude, et al., 1994Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Deltavap10.2 ± 0.2kcal/molAVGN/AAverage of 8 values; Individual data points

Enthalpy of vaporization

DeltavapH (kcal/mol) Temperature (K) Method Reference Comment
10.301400.7N/ASvoboda, Kubes, et al., 1992Value corrected to 298.15 K.; DH
8.688400.7N/AMajer and Svoboda, 1985 
9.32374.EBSiimer, Kirss, et al., 2002Based on data from 359. - 401. K.; AC
10.2 ± 0.02308.CSvoboda, Kubes, et al., 1992AC
9.94 ± 0.02323.CSvoboda, Kubes, et al., 1992AC
9.73 ± 0.02338.CSvoboda, Kubes, et al., 1992AC
9.58 ± 0.02348.CSvoboda, Kubes, et al., 1992AC
9.44 ± 0.02358.CSvoboda, Kubes, et al., 1992AC
9.75308.AStephenson and Malanowski, 1987Based on data from 293. - 411. K.; AC
10.5294.AStephenson and Malanowski, 1987Based on data from 279. - 423. K.; AC
9.92325.AStephenson and Malanowski, 1987Based on data from 310. - 427. K.; AC
8.77436.AStephenson and Malanowski, 1987Based on data from 421. - 523. K.; AC
8.63528.AStephenson and Malanowski, 1987Based on data from 513. - 587. K.; AC
12.9295.N/AStull, 1947Based on data from 280. - 400. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) beta Tc (K) Reference Comment
298. - 368.14.490.2794587.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
280.9 - 400.75.661442011.668-45.364Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of fusion

DeltafusH (kcal/mol) Temperature (K) Reference Comment
3.5612217.69Andon, Counsell, et al., 1970DH
3.56217.7Domalski and Hearing, 1996AC

Entropy of fusion

DeltafusS (cal/mol*K) Temperature (K) Reference Comment
16.36217.69Andon, Counsell, et al., 1970DH
16.35217.7Domalski and Hearing, 1996CAL

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H11O- + Hydrogen cation = 2-Hexanone

By formula: C6H11O- + H+ = C6H12O

Quantity Value Units Method Reference Comment
Deltar365.8 ± 2.1kcal/molTDEqBurkell, Fridgen, et al., 2003gas phase
Quantity Value Units Method Reference Comment
Deltar358.7 ± 2.0kcal/molTDEqBurkell, Fridgen, et al., 2003gas phase

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
NIST MS number 341357

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Harrop, Head, et al., 1970
Harrop, D.; Head, A.J.; Lewis, G.B., Thermodynamic properties of organic oxygen compounds. 22. Enthalpies of combustion of some aliphatic ketones, J. Chem. Thermodyn., 1970, 2, 203-210. [all data]

Andon, Counsell, et al., 1970
Andon, R.J.L.; Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XXIII. Low-temperature heat capacity and entropy of C6, C7, and C9 ketones, 1970, J. [all data]

Timmermans, 1921
Timmermans, J., The Freezing Points of Organic Substances IV. New Exp. Determinations, Bull. Soc. Chim. Belg., 1921, 30, 62. [all data]

Andon, Counsell, et al., 1970, 2
Andon, R.J.L.; Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic Properties of Organic Oxygen Compounds Part XXIII. Low- temperature Heat Capacity and Entropy of C6, C7, and C9 Ketones, J. Chem. Soc. A, 1970, 1970, 833. [all data]

Pulliam, Gude, et al., 1994
Pulliam, M.K.; Gude, M.T.; Teja, A.S., The Critical Properties of Twelve Isomeric n-Alkanones with Six to Nine Carbon Atoms, Experimental Results for DIPPR 1990-91 Projects on Phase Equilibria and Pure Component Properties, 1994, 1994, DIPPR Data Ser. No. 2, p. 184-87. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose, Broderick, et al., 1974
Ambrose, D.; Broderick, B.E.; Townsend, R., The Critical Temperatures and Pressures of Thirty Organic Compounds, J. Appl. Chem. Biotechnol., 1974, 24, 359. [all data]

Svoboda, Kubes, et al., 1992
Svoboda, V.; Kubes, V.; Basarova, P., Enthalpies of vaporization and cohesive energies of hexan-2-one, 2-methylpentan-4-one, 2,2-dimethylbutan-3-one, 2,6-dimethylheptan-4-one and cyclohexanone, J. Chem. Thermodynam., 1992, 24, 333-336. [all data]

Siimer, Kirss, et al., 2002
Siimer, E.; Kirss, H.; Kuus, M.; Kudryavtseva, L., Proc. Est. Acad. Sci. Chem., 2002, 51, 1, 19. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Burkell, Fridgen, et al., 2003
Burkell, J.L.; Fridgen, T.D.; McMahon, T.B., Gas-phase acidities and sites of deprotonation of 2-ketones and structures of the corresponding enolates, Int. J. Mass Spectrom., 2003, 227, 3, 497-508, https://doi.org/10.1016/S1387-3806(03)00102-7 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References