Benzene, iodo-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas165. ± 5.9kJ/molCcbSmith, 1956Heat of formation derived by Cox and Pilcher, 1970

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid117. ± 4.2kJ/molCcbSmith, 1956Heat of formation derived by Cox and Pilcher, 1970; ALS
Quantity Value Units Method Reference Comment
Δcliquid-3192.8 ± 4.2kJ/molCcbSmith, 1956Reanalyzed by Cox and Pilcher, 1970, Original value = -3190.0 kJ/mol; Heat of formation derived by Cox and Pilcher, 1970; ALS
Δcliquid-3192.8 ± 4.2kJ/molCcbSmith, 1956Reanalyzed by Cox and Pilcher, 1970, Original value = -3190.0 kJ/mol; ALS
Quantity Value Units Method Reference Comment
liquid205.4J/mol*KN/AStull, 1937Extrapolation below 91 K, 53.14 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
158.4298.15Shehatta, 1993DH
158.70298.1Stull, 1937T = 90 to 320 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
112.1226.1Aoyama and Kanda, 1935T = 81 to 226 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil461.4 ± 0.6KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus242.15KN/AMallikarjun and Hill, 1965Uncertainty assigned by TRC = 1. K; TRC
Tfus241.9KN/ADreisbach, 1955Uncertainty assigned by TRC = 0.02 K; TRC
Tfus241.8KN/ATimmermans, 1952Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Ttriple241.8KN/AStull, 1937, 2Uncertainty assigned by TRC = 0.25 K; TRC
Quantity Value Units Method Reference Comment
Δvap47.4kJ/molCGCChickos, Hosseini, et al., 1995Based on data from 313. - 353. K.; AC
Δvap48.9kJ/molN/ABoublik, Fried, et al., 1984Based on data from 320. - 460. K. See also Basarová and Svoboda, 1991.; AC
Δvap47.7 ± 4.2kJ/molVSmith, 1956Heat of formation derived by Cox and Pilcher, 1970; ALS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
41.1477.AStephenson and Malanowski, 1987Based on data from 462. - 679. K.; AC
51.4288.AStephenson and Malanowski, 1987Based on data from 273. - 358. K. See also Dykyj, 1972.; AC
46.0373.AStephenson and Malanowski, 1987Based on data from 358. - 543. K. See also Dykyj, 1972.; AC
43.1243. - 255.N/AJones, 1960AC
40.0275.MEZibberman-Granovskaya, 1940Based on data from 248. - 303. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
302.4 - 461.44.37121803.466-47.933Young, 1889Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
9.75241.8Domalski and Hearing, 1996AC
9.749241.83Stull, 1937DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
40.31241.83Stull, 1937DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H7N+ + Benzene, iodo- = (C6H7N+ • Benzene, iodo-)

By formula: C6H7N+ + C6H5I = (C6H7N+ • C6H5I)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr55.6kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
20.324.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Chlorine anion + Benzene, iodo- = (Chlorine anion • Benzene, iodo-)

By formula: Cl- + C6H5I = (Cl- • C6H5I)

Quantity Value Units Method Reference Comment
Δr30.1kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
30.300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

Hydrogen iodide + Benzene, iodo- = Benzene + Iodine

By formula: HI + C6H5I = C6H6 + I2

Quantity Value Units Method Reference Comment
Δr-22. ± 5.9kJ/molCmGraham, Nichol, et al., 1955gas phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Chuck Anderson, Aldrich Chemical Co.
NIST MS number 107742

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Smith, 1956
Smith, L., Corrected heats of combustion of organic iodine compounds, Acta Chem. Scand., 1956, 10, 884-886. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Stull, 1937
Stull, D.R., A semi-micro calorimeter for measuring heat capacities at low temperatures, J. Am. Chem. Soc., 1937, 59, 2726-2733. [all data]

Shehatta, 1993
Shehatta, I., Heat capacity at constant pressure of some halogen compounds, Thermochim. Acta, 1993, 213, 1-10. [all data]

Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E., Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature, Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]

Mallikarjun and Hill, 1965
Mallikarjun, S.; Hill, N.E., Temperature dependence of viscosity and dielectric relaxation time in simple polar liquids, Trans. Faraday Soc., 1965, 61, 1389. [all data]

Dreisbach, 1955
Dreisbach, R.R., Physical Properties of Chemical Compounds, Advances in Chemistry Series No. 15, Am. Chem. Soc.: Washington, D. C., 1955. [all data]

Timmermans, 1952
Timmermans, J., Freezing points of organic compounds. VVI New determinations., Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]

Stull, 1937, 2
Stull, D.R., A Semi-micro Calorimeter for Measuring Heat Capacities at Low Temp., J. Am. Chem. Soc., 1937, 59, 2726. [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Basarová and Svoboda, 1991
Basarová, Pavlína; Svoboda, Václav, Calculation of heats of vaporization of halogenated hydrocarbons from saturated vapour pressure data, Fluid Phase Equilibria, 1991, 68, 13-34, https://doi.org/10.1016/0378-3812(91)85008-I . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1972
Dykyj, J., Petrochemia, 1972, 12, 1, 13. [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Zibberman-Granovskaya, 1940
Zibberman-Granovskaya, A.A., Russ. J. Phys. Chem., 1940, 14, 759. [all data]

Young, 1889
Young, S., On the Vapour-Pressures and Specific Volumes of Similar Compounds of Elements in Relation to the Position of those Elements in the Periodic Table, J. Chem. Soc., 1889, 55, 486-521, https://doi.org/10.1039/ct8895500486 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2, J. Chem. Soc., 1955, 115-121. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References