Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

4-Octanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
80.69298.5Cline and Andrews, 1931T = 102 to 311 K. Value is unsmoothed experimental datum.

Phase change data

Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny, director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tc625.1 ± 0.5KN/AGude and Teja, 1995 
Tc625.1KN/ATeja, Lee, et al., 1989TRC
Tc625.1KN/AAnselme and Teja, 1988Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Vc0.515l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
rhoc1.94mol/lN/AGude and Teja, 1995 
rhoc1.94mol/lN/AAnselme and Teja, 1988Uncertainty assigned by TRC = 0.05 mol/l; TRC
Quantity Value Units Method Reference Comment
Deltavap16.1 ± 0.1kcal/molGSVerevkin and Schick, 2007Based on data from 288. - 322. K.; AC

Enthalpy of vaporization

DeltavapH (kcal/mol) Temperature (K) Method Reference Comment
13.7358.AStephenson and Malanowski, 1987Based on data from 343. - 450. K.; AC
13.1379.N/ASachek, Markovnik, et al., 1984Based on data from 364. - 449. K.; AC
14.8356.N/AWilhoit and Zwolinski, 1973Based on data from 341. - 449. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
283. - 353.5.079511816.393-83.125Geiseler, Fruwert, et al., 1966Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


IR Spectrum

Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1346
NIST MS number 233788

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cline and Andrews, 1931
Cline, J.K.; Andrews, D.H., Thermal energy studies. III. The octanols, J. Am. Chem. Soc., 1931, 53, 3668-3673. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J., Correlation of the Critical Properties of Alkanes and Alkanols in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]

Anselme and Teja, 1988
Anselme, M.J.; Teja, A.S., Critical Temperatures and Densities of Isomeric Alkanols with Six to Ten Carbon Atoms, Fluid Phase Equilib., 1988, 40, 127-34. [all data]

Verevkin and Schick, 2007
Verevkin, Sergey P.; Schick, Christoph, Vapour pressures and heat capacity measurements on the C7--C9 secondary aliphatic alcohols, The Journal of Chemical Thermodynamics, 2007, 39, 5, 758-766, https://doi.org/10.1016/j.jct.2006.10.007 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Sachek, Markovnik, et al., 1984
Sachek, A.I.; Markovnik, V.S.; Peshchenko, A.D.; Shvaro, A.V.; Andreevskii, D.N., Khim. Prom-st. (Moscow), 1984, 337. [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Geiseler, Fruwert, et al., 1966
Geiseler, Gerhard; Fruwert, Johanna; Hüttig, Rainer, Dampfdruck- und Schwingungsverhalten der stellungsisomeren n-Octanole und hydroxydeuterierten n-Octanole, Chem. Ber., 1966, 99, 5, 1594-1601, https://doi.org/10.1002/cber.19660990525 . [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References