1-Butene, 3-methyl-
- Formula: C5H10
- Molecular weight: 70.1329
- IUPAC Standard InChIKey: YHQXBTXEYZIYOV-UHFFFAOYSA-N
- CAS Registry Number: 563-45-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Isopropylethylene; α-Isoamylene; Vinylisopropyl; 2-Methyl-3-butene; 3-Methyl-1-butene; (CH3)2CHCH=CH2; Isopentene; UN 2371; UN 2561; 3-Methylbutene-1; 3-methylbut-1-ene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -25.5 | kJ/mol | N/A | Good and Smith, 1979 | Value computed using ΔfHliquid° value of -51.6±0.62 kj/mol from Good and Smith, 1979 and ΔvapH° value of 26.1 kj/mol from alkenes correlation.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
115. | 298.15 | Thermodynamics Research Center, 1997 | p=1 bar. Recommended values were calculated from data for lower alkenes by a method of increments (see also [ Kilpatrick J.E., 1946]). The results of two statistical thermodynamics calculations [ Radyuk Z.A., 1973, Durig J.R., 1980] are in much more disagreement with experimental entropies (2.6 and 5.1 J/mol*K for S(298.15 K), respectively) than estimated TRC values.; GT |
115. | 300. | ||
143. | 400. | ||
168. | 500. | ||
190. | 600. | ||
208. | 700. | ||
224. | 800. | ||
238. | 900. | ||
250. | 1000. | ||
260. | 1100. | ||
269. | 1200. | ||
277. | 1300. | ||
284. | 1400. | ||
290. | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -51.60 ± 0.62 | kJ/mol | Ccb | Good and Smith, 1979 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3345.10 ± 0.54 | kJ/mol | Ccb | Good and Smith, 1979 | Corresponding ΔfHºliquid = -51.60 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 253.5 | J/mol*K | N/A | Chao, Hall, et al., 1983 | DH |
S°liquid | 253.30 | J/mol*K | N/A | Todd, Oliver, et al., 1947 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
156.1 | 298.15 | Chao, Hall, et al., 1983 | T = 13 to 298 K.; DH |
156.06 | 298.15 | Todd, Oliver, et al., 1947 | T = 12 to 300 K.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C5H10 = C5H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -126.3 ± 0.3 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -126.9 ± 0.3 kJ/mol; At 355 °K |
By formula: C5H10 = C5H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.2 ± 1.5 | kJ/mol | Eqk | Radyuk, Kabo, et al., 1973 | gas phase; Heat of isomerization at 622 K |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
View reactions leading to C5H10+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.52 ± 0.01 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.533 ± 0.003 | PE | Masclet, Grosjean, et al., 1973 | LLK |
9.52 | EI | Lossing, 1972 | LLK |
9.60 ± 0.03 | EI | Gross and Wilkins, 1971 | LLK |
9.52 | PE | Dewar and Worley, 1969 | RDSH |
9.51 ± 0.03 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
9.5 ± 0.1 | PE | Bieri, Burger, et al., 1977 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C3H6+ | 10.76 ± 0.05 | C2H4 | PI | Brand and Baer, 1984 | LBLHLM |
C3H6+ | 11.54 ± 0.10 | C2H4 | EI | Gross and Wilkins, 1971 | LLK |
C4H7+ | 10.74 | CH3 | EI | Brand and Baer, 1984 | LBLHLM |
C4H7+ | 10.75 ± 0.03 | CH3 | PI | Brand and Baer, 1984 | LBLHLM |
C4H7+ | 10.74 | CH3 | EI | Lossing, 1972 | LLK |
C4H7+ | 11.15 ± 0.12 | CH3 | EI | Gross and Wilkins, 1971 | LLK |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good and Smith, 1979
Good, W.D.; Smith, N.K.,
The enthalpies of combustion of the isomeric pentenes in the liquid state. A warning to combustion calorimetrists about sample drying,
J. Chem. Thermodyn., 1979, 11, 111-118. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Kilpatrick J.E., 1946
Kilpatrick J.E.,
Heats, equilibrium constants, and free energies of formation of the monoolefin hydrocarbons,
J. Res. Nat. Bur. Stand, 1946, 36, 559-612. [all data]
Radyuk Z.A., 1973
Radyuk Z.A.,
Equilibrium of isomerization and thermodynamic properties of methylbutenes,
Neftekhimiya, 1973, 13, 356-360. [all data]
Durig J.R., 1980
Durig J.R.,
Torsional spectra of molecules with two internal C3v rotors. 19. Vibrational spectra, torsional potential functions, and conformational and thermodynamic properties of 2-methyl-1-butene,
J. Phys. Chem., 1980, 84, 3554-3561. [all data]
Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M.,
Thermodynamic properties of simple alkenes,
Thermochim. Acta, 1983, 64(3), 285-303. [all data]
Todd, Oliver, et al., 1947
Todd, S.S.; Oliver, G.D.; Huffman, H.M.,
The heat capacities, heats of fusion and entropies of the six pentenes,
J. Am. Chem. Soc., 1947, 69, 1519-1525. [all data]
Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E.,
Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons,
J. Am. Chem. Soc., 1937, 59, 831-841. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Radyuk, Kabo, et al., 1973
Radyuk, Z.A.; Kabo, G.Ya.; Andreevskii, D.N.,
Isomerization equilibrium and thermodynamic properties of methylbutenes,
Neftekhimiya, 1973, 13, 356-360. [all data]
Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G.,
Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects,
J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]
Lossing, 1972
Lossing, F.P.,
Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions,
Can. J. Chem., 1972, 50, 3973. [all data]
Gross and Wilkins, 1971
Gross, M.L.; Wilkins, C.L.,
Computer-assisted ion cyclotron resonance appearance potential measurements for C5H10 isomers,
Anal. Chem., 1971, 43, 1624. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Brand and Baer, 1984
Brand, W.A.; Baer, T.,
Dissociation dynamics of energy-selected C5H10+ ions,
J. Am. Chem. Soc., 1984, 106, 3154. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy S°liquid Entropy of liquid at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.