Carbon monosulfide


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas280.33kJ/molReviewChase, 1998Data last reviewed in December, 1976
Quantity Value Units Method Reference Comment
gas,1 bar210.55J/mol*KReviewChase, 1998Data last reviewed in December, 1976

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 600.600. - 6000.
A 21.7638734.47721
B 24.998902.966255
C -8.095581-0.950722
D -4.5639490.113718
E 0.126372-0.997482
F 273.2328267.0275
G 230.5497247.0731
H 280.3284280.3284
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in December, 1976 Data last reviewed in December, 1976

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Iron ion (1+) + Carbon monosulfide = (Iron ion (1+) • Carbon monosulfide)

By formula: Fe+ + CS = (Fe+ • CS)

Quantity Value Units Method Reference Comment
Δr207. ± 13.kJ/molCIDTRodgers and Armentrout, 2000 
Δr231. ± 12.kJ/molCIDTSchroeder, Kretzschmar, et al., 1999 

Cobalt ion (1+) + Carbon monosulfide = (Cobalt ion (1+) • Carbon monosulfide)

By formula: Co+ + CS = (Co+ • CS)

Quantity Value Units Method Reference Comment
Δr258. ± 33.kJ/molCIDTRue, Armentrout, et al., 2001 
Δr240. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000 

Chromium ion (1+) + Carbon monosulfide = (Chromium ion (1+) • Carbon monosulfide)

By formula: Cr+ + CS = (Cr+ • CS)

Quantity Value Units Method Reference Comment
Δr163. ± 5.9kJ/molCIDTRue, Armentrout, et al., 2001, 2 
Δr158. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000 

Manganese ion (1+) + Carbon monosulfide = (Manganese ion (1+) • Carbon monosulfide)

By formula: Mn+ + CS = (Mn+ • CS)

Quantity Value Units Method Reference Comment
Δr80. ± 21.kJ/molCIDTRue, Armentrout, et al., 2001, 2 
Δr78. ± 14.kJ/molCIDTRodgers and Armentrout, 2000 

Molybdenum ion (1+) + Carbon monosulfide = (Molybdenum ion (1+) • Carbon monosulfide)

By formula: Mo+ + CS = (Mo+ • CS)

Quantity Value Units Method Reference Comment
Δr162. ± 13.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003 
Δr162. ± 18.kJ/molCIDTRodgers and Armentrout, 2000 

Titanium ion (1+) + Carbon monosulfide = (Titanium ion (1+) • Carbon monosulfide)

By formula: Ti+ + CS = (Ti+ • CS)

Quantity Value Units Method Reference Comment
Δr154. ± 5.9kJ/molCIDTRodgers and Armentrout, 2000 

Scandium ion (1+) + Carbon monosulfide = (Scandium ion (1+) • Carbon monosulfide)

By formula: Sc+ + CS = (Sc+ • CS)

Quantity Value Units Method Reference Comment
Δr133. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000 

Zirconium ion (1+) + Carbon monosulfide = (Zirconium ion (1+) • Carbon monosulfide)

By formula: Zr+ + CS = (Zr+ • CS)

Quantity Value Units Method Reference Comment
Δr258. ± 11.kJ/molCIDTRodgers and Armentrout, 2000 

Silver ion (1+) + Carbon monosulfide = (Silver ion (1+) • Carbon monosulfide)

By formula: Ag+ + CS = (Ag+ • CS)

Quantity Value Units Method Reference Comment
Δr152. ± 20.kJ/molCIDTRodgers and Armentrout, 2000 

Vanadium ion (1+) + Carbon monosulfide = (Vanadium ion (1+) • Carbon monosulfide)

By formula: V+ + CS = (V+ • CS)

Quantity Value Units Method Reference Comment
Δr164. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000 

Yttrium ion (1+) + Carbon monosulfide = (Yttrium ion (1+) • Carbon monosulfide)

By formula: Y+ + CS = (Y+ • CS)

Quantity Value Units Method Reference Comment
Δr137. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000 

Nickel ion (1+) + Carbon monosulfide = (Nickel ion (1+) • Carbon monosulfide)

By formula: Ni+ + CS = (Ni+ • CS)

Quantity Value Units Method Reference Comment
Δr236. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000 

Zinc ion (1+) + Carbon monosulfide = (Zinc ion (1+) • Carbon monosulfide)

By formula: Zn+ + CS = (Zn+ • CS)

Quantity Value Units Method Reference Comment
Δr141. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000 

Copper ion (1+) + Carbon monosulfide = (Copper ion (1+) • Carbon monosulfide)

By formula: Cu+ + CS = (Cu+ • CS)

Quantity Value Units Method Reference Comment
Δr234. ± 10.kJ/molCIDTRodgers and Armentrout, 2000 

Niobium ion (1+) + Carbon monosulfide = (Niobium ion (1+) • Carbon monosulfide)

By formula: Nb+ + CS = (Nb+ • CS)

Quantity Value Units Method Reference Comment
Δr242. ± 11.kJ/molCIDTRodgers and Armentrout, 2000 

Ruthenium ion (1+) + Carbon monosulfide = (Ruthenium ion (1+) • Carbon monosulfide)

By formula: Ru+ + CS = (Ru+ • CS)

Quantity Value Units Method Reference Comment
Δr253. ± 20.kJ/molCIDTRodgers and Armentrout, 2000 

Palladium ion (1+) + Carbon monosulfide = (Palladium ion (1+) • Carbon monosulfide)

By formula: Pd+ + CS = (Pd+ • CS)

Quantity Value Units Method Reference Comment
Δr200. ± 14.kJ/molCIDTRodgers and Armentrout, 2000 

Rh+ + Carbon monosulfide = (Rh+ • Carbon monosulfide)

By formula: Rh+ + CS = (Rh+ • CS)

Quantity Value Units Method Reference Comment
Δr234. ± 19.kJ/molCIDTRodgers and Armentrout, 2000 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to CS+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)11.33 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)791.5kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity760.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Δf(+) ion1370.kJ/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K1360.kJ/molN/AN/A 

Electron affinity determinations

EA (eV) Method Reference Comment
0.205 ± 0.021LPESBurnett, Feigerle, et al., 1982B
>1.60 ± 0.30EIAEThynne, 1972From COS; B

Ionization energy determinations

IE (eV) Method Reference Comment
11.335EVALHuber and Herzberg, 1979LLK
11.0 ± 0.03EITal'roze, Butkovskaya, et al., 1978LLK
11.33 ± 0.01PIDrowart, Smets, et al., 1978LLK
11.4 ± 0.1EIHildenbrand, 1975LLK
11.33 ± 0.02PEKing, Kroto, et al., 1972LLK
11.33 ± 0.01PEJonathan, Morris, et al., 1972LLK
11.33 ± 0.02PEJonathan, Morris, et al., 1972, 2LLK
11.39 ± 0.10EIHildenbrand, 1972LLK
11.34 ± 0.02PEFrost, Lee, et al., 1972LLK
~11.65SDonovan, Husain, et al., 1970RDSH
11.71 ± 0.03DERDibeler and Walker, 1967RDSH
11.8 ± 0.2EIBlanchard and LeGoff, 1957RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Carbon monosulfide = (Silver ion (1+) • Carbon monosulfide)

By formula: Ag+ + CS = (Ag+ • CS)

Quantity Value Units Method Reference Comment
Δr152. ± 20.kJ/molCIDTRodgers and Armentrout, 2000 

Cobalt ion (1+) + Carbon monosulfide = (Cobalt ion (1+) • Carbon monosulfide)

By formula: Co+ + CS = (Co+ • CS)

Quantity Value Units Method Reference Comment
Δr258. ± 33.kJ/molCIDTRue, Armentrout, et al., 2001 
Δr240. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000 

Chromium ion (1+) + Carbon monosulfide = (Chromium ion (1+) • Carbon monosulfide)

By formula: Cr+ + CS = (Cr+ • CS)

Quantity Value Units Method Reference Comment
Δr163. ± 5.9kJ/molCIDTRue, Armentrout, et al., 2001, 2 
Δr158. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000 

Copper ion (1+) + Carbon monosulfide = (Copper ion (1+) • Carbon monosulfide)

By formula: Cu+ + CS = (Cu+ • CS)

Quantity Value Units Method Reference Comment
Δr234. ± 10.kJ/molCIDTRodgers and Armentrout, 2000 

Iron ion (1+) + Carbon monosulfide = (Iron ion (1+) • Carbon monosulfide)

By formula: Fe+ + CS = (Fe+ • CS)

Quantity Value Units Method Reference Comment
Δr207. ± 13.kJ/molCIDTRodgers and Armentrout, 2000 
Δr231. ± 12.kJ/molCIDTSchroeder, Kretzschmar, et al., 1999 

Manganese ion (1+) + Carbon monosulfide = (Manganese ion (1+) • Carbon monosulfide)

By formula: Mn+ + CS = (Mn+ • CS)

Quantity Value Units Method Reference Comment
Δr80. ± 21.kJ/molCIDTRue, Armentrout, et al., 2001, 2 
Δr78. ± 14.kJ/molCIDTRodgers and Armentrout, 2000 

Molybdenum ion (1+) + Carbon monosulfide = (Molybdenum ion (1+) • Carbon monosulfide)

By formula: Mo+ + CS = (Mo+ • CS)

Quantity Value Units Method Reference Comment
Δr162. ± 13.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003 
Δr162. ± 18.kJ/molCIDTRodgers and Armentrout, 2000 

Niobium ion (1+) + Carbon monosulfide = (Niobium ion (1+) • Carbon monosulfide)

By formula: Nb+ + CS = (Nb+ • CS)

Quantity Value Units Method Reference Comment
Δr242. ± 11.kJ/molCIDTRodgers and Armentrout, 2000 

Nickel ion (1+) + Carbon monosulfide = (Nickel ion (1+) • Carbon monosulfide)

By formula: Ni+ + CS = (Ni+ • CS)

Quantity Value Units Method Reference Comment
Δr236. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000 

Palladium ion (1+) + Carbon monosulfide = (Palladium ion (1+) • Carbon monosulfide)

By formula: Pd+ + CS = (Pd+ • CS)

Quantity Value Units Method Reference Comment
Δr200. ± 14.kJ/molCIDTRodgers and Armentrout, 2000 

Rh+ + Carbon monosulfide = (Rh+ • Carbon monosulfide)

By formula: Rh+ + CS = (Rh+ • CS)

Quantity Value Units Method Reference Comment
Δr234. ± 19.kJ/molCIDTRodgers and Armentrout, 2000 

Ruthenium ion (1+) + Carbon monosulfide = (Ruthenium ion (1+) • Carbon monosulfide)

By formula: Ru+ + CS = (Ru+ • CS)

Quantity Value Units Method Reference Comment
Δr253. ± 20.kJ/molCIDTRodgers and Armentrout, 2000 

Scandium ion (1+) + Carbon monosulfide = (Scandium ion (1+) • Carbon monosulfide)

By formula: Sc+ + CS = (Sc+ • CS)

Quantity Value Units Method Reference Comment
Δr133. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000 

Titanium ion (1+) + Carbon monosulfide = (Titanium ion (1+) • Carbon monosulfide)

By formula: Ti+ + CS = (Ti+ • CS)

Quantity Value Units Method Reference Comment
Δr154. ± 5.9kJ/molCIDTRodgers and Armentrout, 2000 

Vanadium ion (1+) + Carbon monosulfide = (Vanadium ion (1+) • Carbon monosulfide)

By formula: V+ + CS = (V+ • CS)

Quantity Value Units Method Reference Comment
Δr164. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000 

Yttrium ion (1+) + Carbon monosulfide = (Yttrium ion (1+) • Carbon monosulfide)

By formula: Y+ + CS = (Y+ • CS)

Quantity Value Units Method Reference Comment
Δr137. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000 

Zinc ion (1+) + Carbon monosulfide = (Zinc ion (1+) • Carbon monosulfide)

By formula: Zn+ + CS = (Zn+ • CS)

Quantity Value Units Method Reference Comment
Δr141. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000 

Zirconium ion (1+) + Carbon monosulfide = (Zirconium ion (1+) • Carbon monosulfide)

By formula: Zr+ + CS = (Zr+ • CS)

Quantity Value Units Method Reference Comment
Δr258. ± 11.kJ/molCIDTRodgers and Armentrout, 2000 

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through October, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 12C32S
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Fragments of further band systems and Rydberg series
missing citation
G (81373) [1229]         G ← X 81347
missing citation
F           F ← X 77537
missing citation
Continuous absorption to a repulsive state; 74600 - 76300 cm-1.
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
E (71890) [1459] H         (E ← X) (V) 71979 H
missing citation
c (3Σ+)           c ← X 1 71803 H
missing citation
C (1Σ+) (71255) [1425] H         C ← X 2 71327 H
missing citation
B (1Σ+) (64868) [1332] H         (B ← X) (V) 64893 H
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A' 1Σ+ 56505 462.4 H 7.46 3 -0.108 0.5114 0.0109 4  (2.5E-6)  1.944 A' → X R 56093 H
missing citation
x, yFragments of two perturbing states (Bx<0.61, By<0.77) near 39170 and 39950 cm-1.
Barrow, Dixon, et al., 1961
A new band at 39138 cm-1, originally Field and Bergeman, 1971 attributed to a 3Δ state, is now believed to be due to v=11 of a 3Π Bruna, Kammer, et al., 1975.
A 1Π 38904.4 1073.4 5 Z 10.1  0.7800 5 6 $I 0.0063 -0.0004 (1.65E-6)  1.5739 A ↔ X 7 8 R 38797.6 Z
missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
e 3Σ- 38683 752 9 4.7  0.6194 9 0.0040  (1.68E-6)  1.766 e ← X R 38417 9
missing citation
d 3ΔI 11 35675.0 795.6 10 4.91  0.6367 10 0.0061  (1.63E-6)  1.7420 d ← X R 35430.6 10
missing citation; Field and Bergeman, 1971; Cossart and Bergeman, 1976
a' 3Σ+ 31331.4 830.7 10 5.04  0.6489 10 12 0.0060  (1.58E-6)  1.7255 a' ← X R 31104.6 10
missing citation; Field and Bergeman, 1971; Cossart and Bergeman, 1976
Unclassified emission bands, probably due to triplet - triplet transitions, in the region 13300 - 22200 cm-1.
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a 3Πr 27661.0 13 1135.1 10 7.73  0.7851 10 0.0072  [1.94E-6] 14  1.5687 a → X 15 R 27585.7 10
Tewarson and Palmer, 1968; missing citation; Cossart and Bergeman, 1976
X 1Σ+ 0 1285.08 Z 6.46  0.8200462 $I 0.0059224  1.43E-6  1.534941 16  
Mockler and Bird, 1955; Kewley, Sastry, et al., 1963; Lovas and Krupenie, 1974

Notes

1Single weak absorption band.
2Bands described as diffuse.
3ωeze = -0.0377.
4αv= +0.00112(v+1/2)2 - 0.000208(v+1/2)3.
5Deperturbed constants Barrow, Dixon, et al., 1961; all observed vibrational levels of this state are strongly perturbed by interactions with a 3Π, a' 3Σ+, d 3Δ, e 3Σ- Lagerqvist, Westerlund, et al., 1959, Barrow, Dixon, et al., 1961, Field and Bergeman, 1971. The following rather different set of deperturbed parameters is given by Cossart and Bergeman, 1976; Te = 38895.7 Cossart and Bergeman, 1976, ωe = 1077.3 Cossart and Bergeman, 1976, ωexe = 10.66 Cossart and Bergeman, 1976, Be = 0.7881 Cossart and Bergeman, 1976, αe = 0.0092 Cossart and Bergeman, 1976.
6Λ-doubling intervals in v=0 (J=1-9) range from 0.00045 to 0.05961cm-1 Silvers, Bergeman, et al., 1970, Field and Bergeman, 1971. The variation with J of the Stark effect was observed in optical-rf double resonance and was analyzed Field and Bergeman, 1971 to give μel(v=0) = 0.63 D (+CS-); see also Silvers, Bergeman, et al., 1970.
7Lifetimes from Hanle effect observations τ(v=0) = 176 ns Silvers and Chiu, 1972 (corrected for lengthening by triplet mixing), τ(v=2) = 203 ns Silvers and Chiu, 1972. The phase shift method Smith, 1969 gives τ(v=0) = 255 ns Smith, 1969, τ(v=1) = 339 ns Smith, 1969, τ(v ≥ 2) = 292 ns Smith, 1969; f00 = 0.0059.
8Morse-potential Franck-Condon factors Felenbok, 1965: compare with experimental values from the fluorescence spectrum excited in the VUV photolysis of CS2 and OCS Lee and Judge, 1975. C34S isotopic bands Narasimham and Gopal, 1966, Chaudhry, Upadhya, et al., 1970.
9Only v=1 and 2 observed Barrow, Dixon, et al., 1961; the vibrational numbering is from isotope studies Field and Bergeman, 1971. The following set of deperturbed parameters is given by Cossart and Bergeman, 1976; Te = 38681.9, ωe = 752.8, ωexe = 4.95, Be = 0.6227, αe = 0.0062. Spin-splitting in v=1: λ+1/2γ = 1.75 Barrow, Dixon, et al., 1961.
10Deperturbed constants Cossart and Bergeman, 1976.
11This state, originally Barrow, Dixon, et al., 1961, Field and Bergeman, 1971 considered to be 3Π and labelled k, is now believed to be 3Δ Robbe and Schamps, 1972, Bruna, Kammer, et al., 1975. The name has been changed to d 3Δ in order to emphasize the similarity to CO. A ~ -50.
12Spin-splitting constant λ(v=10) = -1.28 Field and Bergeman, 1971.
13A ~ 95 cm-1.
14From Taylor, Setser, et al., 1972.
15Two subbands corresponding to 3Π1 - 3Σ+ and 3Π0 - 3Σ+ have been observed Taylor, Setser, et al., 1972.
16Microwave sp. 20
17From a short extrapolation of the vibrational levels in A 1Σ+ Bell, Ng, et al., 1972, assuming that the atomic products arising at the dissociation limit are C, 3P2 + S, 3P2. The latest thermochemical (mass-spectrometric) value is D00= 7.21 eV Hildenbrand, 1972. Both values agree with an upper limit (< 7.7 eV) derived from infrared chemiluminescence studies Hancock, Morley, et al., 1971, and the corresponding heats of formation, ΔHof0 = 66.11 or 69.5 kcal/mole, respectively, are supported by photodissociation Okabe, 1972 and photoionization Dibeler and Walker, 1967, 2 results for CS2. See, however, Hubin-Franskin, Locht, et al., 1976, Hubin-Franskin, Katihabwa, et al., 1976 who suggest ΔHof0 = 33 kcal/mole, implying D00 = 8.79 eV.
18From the photoelectron spectrum Jonathan, Morris, et al., 1972, King, Kroto, et al., 1972, Frost, Lee, et al., 1972.
19RKR potential functions Nair, Singh, et al., 1965.
20Dipole moments [-CS+, see McGurk, Tigleaar, et al., 1973] from Stark effect μel(v=0) = 1.958 D Winnewisser and Cook, 1968, μel(v=1) = 1.936 D Winnewisser and Cook, 1968. Zeeman effect McGurk, Tigleaar, et al., 1973, molecular g factor -0.2702. 32S/33S and 32S/34S mass ratios from microwave spectra Rosenblum, Townes, et al., 1958.
21D00(CS) + I.P.(S) - I.P.(CS).
22From the photoelectron spectrum Frost, Lee, et al., 1972: see also Jonathan, Morris, et al., 1972.
23A = -298.46 Horani, 1979.
24From the photoelectron spectrum Frost, Lee, et al., 1972; Jonathan, Morris, et al., 1972 and King, Kroto, et al., 1972 give 1330 and 1290 cm-1, respectively. Only one level has been found in the optical spectrum Horani, 1979.
25Spin-splitting constant γ0 = +0.0201.

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Schroeder, Kretzschmar, et al., 1999
Schroeder, D.; Kretzschmar, I.; Schwarz; Rue, C.; Armentrout, P.B., On the Structural Dichotomy of Cationic, Anionic, and Neutral FeS2, Inorg. Chem., 1999, 38, 15, 3474, https://doi.org/10.1021/ic990241b . [all data]

Rue, Armentrout, et al., 2001
Rue, C.; Armentrout, P.B.; Kretzschmar, I.; Schroeder, D.; Schwarz, H., Guided Ion Beam Studies of the Reactions of Fe+ and Co+ With CS2 and COS, J. Phys. Chem. A, 2001, 105, 37, 8456, https://doi.org/10.1021/jp0120716 . [all data]

Rue, Armentrout, et al., 2001, 2
Rue, C.; Armentrout, P.B.; Kretzschmar, I.; Schroeder, D.; Schwarz, H., Guided Ion Beam Studies of the Reactions of the State-Specific Reactions of Cr+ and Mn+ with CS2 and COS, Int. J. Mass Spectrom., 2001, 210/211, 283, https://doi.org/10.1016/S1387-3806(01)00400-6 . [all data]

Schroeder, Kretzschmar, et al., 2003
Schroeder, D.; Kretzschmar, I.; Schwarz; Armentrout, P.B., Structure, Thermochemistry, and Reactivityof MSn+ Cations (M=V,Mo; n=1-3) in the Gas Phase, Int. J. Mass Spectrom., 2003, 228, 2-3, 439, https://doi.org/10.1016/S1387-3806(03)00137-4 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Burnett, Feigerle, et al., 1982
Burnett, S.M.; Feigerle, C.S.; Stevens, A.E.; Lineberger, C.W., Photoelectron spectroscopy of CS- and NS-, J. Phys. Chem., 1982, 86, 4486. [all data]

Thynne, 1972
Thynne, J.C.J., Negative Ion Studies with a Time-of-Flight Mass Spectrometer., Dyn. Mass Spectrom., 1972, 3, 67. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]

Tal'roze, Butkovskaya, et al., 1978
Tal'roze, V.L.; Butkovskaya, N.I.; Larichev, M.N.; Leipunskii, I.O.; Morozov, I.I.; Dodonov, A.F.; Kudrov, B.V.; Zelenov, V.V.; Raznikov, V.V., Advances in the mass spectrometry of free radicals, Adv. Mass Spectrom., 1978, 7, 693. [all data]

Drowart, Smets, et al., 1978
Drowart, J.; Smets, J.; Reynaert, J.C.; Coppens, P., Mass spectrometric study of the photoionization of inorganic gases vapours, Adv. Mass Spectrom., 1978, 7, 647. [all data]

Hildenbrand, 1975
Hildenbrand, D.L., Vertical ionization potential of the CF2 radical, Chem. Phys. Lett., 1975, 32, 30. [all data]

King, Kroto, et al., 1972
King, G.H.; Kroto, H.W.; Suffolk, R.J., The photoelectron spectrum of a short-lived species in the decomposition products of CS2, Chem. Phys. Lett., 1972, 13, 457. [all data]

Jonathan, Morris, et al., 1972
Jonathan, N.; Morris, A.; Okuda, M.; Ross, K.J.; Smith, D.J., Photoelectron spectroscopy of transient species. The CS molecule, Faraday Discuss. Chem. Soc., 1972, 54, 48. [all data]

Jonathan, Morris, et al., 1972, 2
Jonathan, N.; Morris, A.; Okuda, M.; Smith, D.J.; Ross, K.J., Photoelectron spectroscopy of transient species: The CS molecule, Chem. Phys. Lett., 1972, 13, 334. [all data]

Hildenbrand, 1972
Hildenbrand, D.L., Thermochemistry of the molecules CS and CS+, Chem. Phys. Lett., 1972, 15, 379. [all data]

Frost, Lee, et al., 1972
Frost, D.C.; Lee, S.T.; McDowell, C.A., The high resolution photoelectron spectrum of CS, Chem. Phys. Lett., 1972, 17, 153. [all data]

Donovan, Husain, et al., 1970
Donovan, R.J.; Husain, D.; Stevenson, C.D., Vacuum ultra-violet spectra of transient molecules and radicals. Part 1. CS and S2, J. Chem. Soc. Faraday Trans., 1970, 66, 1. [all data]

Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A., Mass spectrometric study of the photoionization of small polyatomic molecules, Advan. Mass Spectrom., 1967, 4, 767. [all data]

Blanchard and LeGoff, 1957
Blanchard, L.P.; LeGoff, P., Mass spectrometric study of the species CS, SO, and CCl2 produced in primary heterogeneous reactions, Can. J. Chem., 1957, 35, 89. [all data]

Barrow, Dixon, et al., 1961
Barrow, R.F.; Dixon, R.N.; Lagerqvist, A.; Wright, C.V., Rotational analysis of the absorption spectrum of carbon monosulphide, Ark. Fys., 1961, 18, 543. [all data]

Field and Bergeman, 1971
Field, R.W.; Bergeman, T.H., Radio-frequency spectroscopy and perturbation analysis in CS A1Π(v=O), J. Chem. Phys., 1971, 54, 2936. [all data]

Bruna, Kammer, et al., 1975
Bruna, P.J.; Kammer, W.E.; Vasudevan, K., Vertical electronic spectrum of CS molecule, Chem. Phys., 1975, 9, 91. [all data]

Cossart and Bergeman, 1976
Cossart, D.; Bergeman, T., Off-diagonal spin-orbit and apparent spin-spin parameters in carbon monosulfide, J. Chem. Phys., 1976, 65, 5462-5468. [all data]

Tewarson and Palmer, 1968
Tewarson, A.; Palmer, H.B., A new band system of CS in the near ultraviolet region, J. Mol. Spectrosc., 1968, 27, 246. [all data]

Mockler and Bird, 1955
Mockler, R.C.; Bird, G.R., Microwave spectrum of carbon monsulfide, Phys. Rev., 1955, 98, 1837. [all data]

Kewley, Sastry, et al., 1963
Kewley, R.; Sastry, K.V.L.N.; Winnewisser, M.; Gordy, W., Millimeter wave spectroscopy of unstable molecular species. I. Carbon monosulfide, J. Chem. Phys., 1963, 39, 2856. [all data]

Lovas and Krupenie, 1974
Lovas, F.J.; Krupenie, P.H., Microwave spectra of molecules of astrophysical interest. VII. Carbon monoxide, carbon monosulfide, and silicon monoxide, J. Phys. Chem. Ref. Data, 1974, 3, 245. [all data]

Lagerqvist, Westerlund, et al., 1959
Lagerqvist, A.; Westerlund, H.; Wright, C.V.; Barrow, R.F., Rotational analysis of the ultraviolet band system of CS, Ark. Fys., 1959, 14, 387. [all data]

Silvers, Bergeman, et al., 1970
Silvers, S.J.; Bergeman, T.H.; Klemperer, W., Level crossing and double resonance on the A1Π state of CS, J. Chem. Phys., 1970, 52, 4385. [all data]

Silvers and Chiu, 1972
Silvers, S.J.; Chiu, C.-L., Hanle effect measurement of the lifetime of the A1Π state of CS, J. Chem. Phys., 1972, 56, 5663. [all data]

Smith, 1969
Smith, W.H., Absolute transition probabilities for some electronic states of CS, SO and S2, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 1191. [all data]

Felenbok, 1965
Felenbok, P., Franck-Condon factors and r centroids for A1Π - X1Σ+ system of CS, Proc. Phys. Soc. London, 1965, 86, 676. [all data]

Lee and Judge, 1975
Lee, L.C.; Judge, D.L., CS(A1Π → X1Σ+) fluorescence from photodissociation of CS2 and OCS, J. Chem. Phys., 1975, 63, 2782. [all data]

Narasimham and Gopal, 1966
Narasimham, N.A.; Gopal, K.S., Isotope shifts (C32S-C34S) in the bands of the A1Π-X1Σ+ system of CS, Curr. Sci., 1966, 35, 485. [all data]

Chaudhry, Upadhya, et al., 1970
Chaudhry, A.K.; Upadhya, K.N.; Thakur, S.N., Rotational structure in the 1Π-1Σ+ transition of CS34 molecule, Indian J. Phys., 1970, 44, 375. [all data]

Robbe and Schamps, 1972
Robbe, J.M.; Schamps, J., The nature of the k state of CS, Chem. Phys. Lett., 1972, 15, 596. [all data]

Taylor, Setser, et al., 1972
Taylor, G.W.; Setser, D.W.; Coxon, J.A., The emission spectrum of CS(a3Π → X1Σ+) excited by interaction of CS containing molecules with metastable argon atoms, J. Mol. Spectrosc., 1972, 44, 108. [all data]

Bell, Ng, et al., 1972
Bell, S.; Ng, T.L.; Suggitt, C., An emission system of CS in the vacuum and near ultraviolet, J. Mol. Spectrosc., 1972, 44, 267. [all data]

Hancock, Morley, et al., 1971
Hancock, G.; Morley, C.; Smith, I.W.M., Vibrational excitation of CO in the reaction: O + CS → CO + S, Chem. Phys. Lett., 1971, 12, 193. [all data]

Okabe, 1972
Okabe, H., Photodissociation of CS2 in the vacuum ultraviolet; determination of D0° (SC-S), J. Chem. Phys., 1972, 56, 4381. [all data]

Dibeler and Walker, 1967, 2
Dibeler, V.H.; Walker, J.A., Mass-spectrometric study of photoionization. VI. O2, CO2, COS, and CS2, J. Opt. Soc. Am., 1967, 57, 1007. [all data]

Hubin-Franskin, Locht, et al., 1976
Hubin-Franskin, M.-J.; Locht, R.; Katihabwa, J., Dissociative ionization of carbon disulphide in the gas phase. Heat of formation of the CS radical, Chem. Phys. Lett., 1976, 37, 488. [all data]

Hubin-Franskin, Katihabwa, et al., 1976
Hubin-Franskin, M.-J.; Katihabwa, J.; Collin, J.E., Dissociative electron attachment for the carbonyl sulphide molecule in the gas phase. Heat of formation of the CS radical, Int. J. Mass Spectrom. Ion Phys., 1976, 20, 285. [all data]

Nair, Singh, et al., 1965
Nair, K.P.R.; Singh, R.B.; Rai, D.K., Potential-energy curves and dissociation energies of oxides and sulfides of group IV A elements, J. Chem. Phys., 1965, 43, 3570. [all data]

McGurk, Tigleaar, et al., 1973
McGurk, J.; Tigleaar, H.L.; Rock, S.L.; Norris, C.L.; Flygare, W.H., Detection assignment of the microwave spectrum and the molecular Stark and Zeeman effects in CSe, and the Zeeman effect and sign of the dipole moment in CS, J. Chem. Phys., 1973, 58, 1420. [all data]

Winnewisser and Cook, 1968
Winnewisser, G.; Cook, R.L., The dipole moment of carbon monosulfide, J. Mol. Spectrosc., 1968, 28, 266. [all data]

Rosenblum, Townes, et al., 1958
Rosenblum, B.; Townes, C.H.; Geschwind, S., Recent determinations of atomic mass ratios by microwave spectroscopy, Rev. Mod. Phys., 1958, 30, 409. [all data]

Horani, 1979
Horani, M., Unpublished cited in Huber and Herzberg, 1979, 2, 1979, 187. [all data]

Huber and Herzberg, 1979, 2
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, 1979, 716. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, NIST Free Links, References