Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Cyclooctane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Deltafgas-126.1 ± 1.6kJ/molN/ASpitzer and Huffman, 1947Value computed using «DELTA»fHliquid° value of -169.4±1.6 kj/mol from Spitzer and Huffman, 1947 and «DELTA»vapH° value of 43.35±0.21 kj/mol from missing citation.; DRB
Quantity Value Units Method Reference Comment
gas366.8 ± 1.3J/mol*KN/AFinke H.L., 1956GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
38.6250.Dorofeeva O.V., 1986S(T) values calculated by [ Stull D.R., 1969] are in good agreement with those selected here; however, the discrepancy in Cp(298.15 K) amounts to 6.2 J/mol*K. S(T) values calculated by molecular mechanics method [ Chang S., 1970] are about 13 J/mol*K less than recommended ones; discrepancies in Cp(T) values amount to 1-2 J/mol*K.; GT
64.77100.
83.16150.
99.99200.
133.07273.15
146.2 ± 5.0298.15
147.19300.
202.16400.
253.07500.
296.64600.
333.38700.
364.46800.
390.90900.
413.471000.
432.791100.
449.361200.
463.611300.
475.901400.
486.531500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Deltafliquid-169.4 ± 1.6kJ/molCcbSpitzer and Huffman, 1947Reanalyzed by Cox and Pilcher, 1970, Original value = -169.9 ± 2.5 kJ/mol; ALS
Quantity Value Units Method Reference Comment
Deltacliquid-5265.7 ± 0.9kJ/molCcbKaarsemaker and Coops, 1952Corresponding «DELTA»fliquid = -169.0 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-5265.3 ± 1.6kJ/molCcbSpitzer and Huffman, 1947Reanalyzed by Cox and Pilcher, 1970, Original value = -5264.9 ± 1.6 kJ/mol; Corresponding «DELTA»fliquid = -169.4 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid262.00J/mol*KN/AFinke, Scott, et al., 1956DH
Quantity Value Units Method Reference Comment
Deltacsolid-5252.6kJ/molCcbRuzieka and Schlapfer, 1933Heat of combustion corrected for pressure; Corresponding «DELTA»fsolid = -182. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
215.78298.15Shiohama, Ogawa, et al., 1988DH
215.53298.15Tanaka, 1985DH
215.461298.15Fortier, D'Arcy, et al., 1979DH
214.53298.15Wilhelm, Faradjzadeh, et al., 1979DH
214.24298.15Jolicoeur, Boileau, et al., 1975DH
215.48298.15Finke, Scott, et al., 1956T = 12 to 330 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Kenneth Kroenlein director
BS - Robert L. Brown and Stephen E. Stein
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil422. ± 6.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus285. ± 5.KAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple287.94KN/AFinke, Scott, et al., 1956, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.07 K; TRC
Ttriple287.98KN/AFinke, Scott, et al., 1956, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple287.940KN/AWaddington, 1955Uncertainty assigned by TRC = 0.05 K; date of correspondence not given on card; TRC
Ttriple287.970KN/AWaddington, 1955Uncertainty assigned by TRC = 0.02 K; date of correspondence not given on card; TRC
Ttriple288.0KN/AKaarsemaker, 1951Crystal phase 1 phase; Uncertainty assigned by TRC = 3. K; TRC
Quantity Value Units Method Reference Comment
Tc647.2 ± 0.5KN/ADaubert, 1996 
Tc674.2KN/AYoung, 1972Uncertainty assigned by TRC = 0.6 K; TRC
Tc647.2KN/AHicks and Young, 1971Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Pc35.6 ± 0.4barN/ADaubert, 1996 
Pc35.50barN/AYoung, 1972Uncertainty assigned by TRC = 0.40 bar; TRC
Pc35.60barN/AHicks and Young, 1971Uncertainty assigned by TRC = 0.4053 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.410l/molN/ADaubert, 1996 
Vc0.411l/molN/AYoung, 1972Uncertainty assigned by TRC = 0.007 l/mol; TRC
Quantity Value Units Method Reference Comment
rhoc2.44 ± 0.04mol/lN/ADaubert, 1996 
Quantity Value Units Method Reference Comment
Deltavap43.35 ± 0.21kJ/molVFinke, Scott, et al., 1956, 3ALS
Deltavap43.3 ± 0.2kJ/molN/AFinke, Scott, et al., 1956AC
Deltavap44.7kJ/molVKaarsemaker and Coops, 1952ALS
Deltavap43.5kJ/molESpitzer and Huffman, 1947ALS

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
424.20.987Aldrich Chemical Company Inc., 1990BS
421.70.999Weast and Grasselli, 1989BS

Enthalpy of vaporization

DeltavapH (kJ/mol) Temperature (K) Method Reference Comment
40.3373.N/AWu, Locke, et al., 1991Based on data from 358. - 413. K.; AC
43.3304.AStephenson and Malanowski, 1987Based on data from 289. - 369. K.; AC
39.4384.A,EBStephenson and Malanowski, 1987Based on data from 369. - 467. K. See also Finke, Scott, et al., 1956.; AC
39.3388.EBMeyer and Hotz, 1976Based on data from 373. - 434. K.; AC
43.1306.N/AAnand, Grolier, et al., 1975Based on data from 291. - 323. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
369.86 - 467.63.988051438.687-63.024Finke, Scott, et al., 1956Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

DeltasubH (kJ/mol) Temperature (K) Method Reference Comment
58.7166.BBondi, 1963AC

Enthalpy of fusion

DeltafusH (kJ/mol) Temperature (K) Reference Comment
2.41288.Acree, 1991AC

Enthalpy of phase transition

DeltaHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
6.3057166.5crystaline, IIIcrystaline, IIFinke, Scott, et al., 1956DH
0.4782183.8crystaline, IIcrystaline, IFinke, Scott, et al., 1956DH
2.4096287.98crystaline, IliquidFinke, Scott, et al., 1956DH

Entropy of phase transition

DeltaStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
37.87166.5crystaline, IIIcrystaline, IIFinke, Scott, et al., 1956DH
2.60183.8crystaline, IIcrystaline, IFinke, Scott, et al., 1956DH
8.37287.98crystaline, IliquidFinke, Scott, et al., 1956DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + Cyclooctene, (Z)- = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Deltar-102.kJ/molChydDoering, Roth, et al., 1989liquid phase
Deltar-103. ± 0.8kJ/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane
Deltar-96.40 ± 0.71kJ/molChydRogers, Von Voithenberg, et al., 1978liquid phase; solvent: Hexane
Deltar-96.1 ± 0.4kJ/molChydTurner and Meador, 1957liquid phase; solvent: Acetic acid
Deltar-97.40 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -98.4 ± 0.2 kJ/mol; At 355 K

Hydrogen + trans-Cyclooctene = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Deltar-144. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase; see Doering, Roth, et al., 1989
Deltar-144.0 ± 1.8kJ/molChydRogers, Von Voithenberg, et al., 1978liquid phase; solvent: Hexane
Deltar-134.9 ± 0.88kJ/molChydTurner and Meador, 1957liquid phase; solvent: Acetic acid

3Hydrogen + 1,3,5-Cyclooctatriene = Cyclooctane

By formula: 3H2 + C8H10 = C8H16

Quantity Value Units Method Reference Comment
Deltar-319.6 ± 1.8kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Acetic acid
Deltar-302.8 ± 1.1kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid

2Hydrogen + Cyclooctyne = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Deltar-291. ± 0.8kJ/molChydRoth, Hopf, et al., 1994liquid phase; solvent: Isooctane
Deltar-289.kJ/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid

1,5-Cyclooctadiene + 2Hydrogen = Cyclooctane

By formula: C8H12 + 2H2 = C8H16

Quantity Value Units Method Reference Comment
Deltar-230. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase
Deltar-224.6 ± 0.08kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid

2Hydrogen + 1,3-Cyclooctadiene, (Z,Z)- = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Deltar-208.kJ/molChydRoth, Adamczak, et al., 1991liquid phase
Deltar-204.8 ± 0.3kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid

1,4-Cyclooctadiene + 2Hydrogen = Cyclooctane

By formula: C8H12 + 2H2 = C8H16

Quantity Value Units Method Reference Comment
Deltar-217.9 ± 1.2kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid

3Hydrogen + 1,3,6-Cyclooctatriene = Cyclooctane

By formula: 3H2 + C8H10 = C8H16

Quantity Value Units Method Reference Comment
Deltar-334.3 ± 0.71kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid

4Hydrogen + 1,3,5,7-Cyclooctatetraene = Cyclooctane

By formula: 4H2 + C8H8 = C8H16

Quantity Value Units Method Reference Comment
Deltar-409.9 ± 0.2kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid

4Hydrogen + 1,5-Cyclooctadiyne = Cyclooctane

By formula: 4H2 + C8H8 = C8H16

Quantity Value Units Method Reference Comment
Deltar640. ± 1.kJ/molChydRoth, Hopf, et al., 1994liquid phase; solvent: Isooctane

Hydrogen + Cyclooctene = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Deltar-94. ± 1.kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Acetic acid

2Hydrogen + 1,5-Cyclooctadiene, (E,E)- = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Deltar-320. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase

2Hydrogen + (Z,E)-1,3-Cyclooctadiene = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Deltar-271. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase

2Hydrogen + 1,5-Cyclooctadiene, (E,Z)- = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Deltar-282. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/kg*bar)
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/kg*bar) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0098 QN/ASeveral references are given in the list of Henry's law constants but not assigned to specific species.
0.0095 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi

Quantity Value Units Method Reference Comment
IE (evaluated)9.75 ± 0.04eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
9.82 ± 0.05EIHolmes and Lossing, 1991LL
9.75EQSieck and Mautner(Meot-Ner), 1982LBLHLM
9.74 ± 0.05PIGolubitskii, Kulikov, et al., 1979LLK
10.08 ± 0.05EIPuttemans, 1974LLK
9.80PEPuttemans, 1974LLK
9.7PEBatich, Bischof, et al., 1973LLK

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 826
NIST MS number 228916

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedC78, Branched paraffin130.965.8Dallos, Sisak, et al., 2000He; Column length: 3.3 m
PackedC78, Branched paraffin130.963.9Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
CapillaryHP-160.911.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-160.912.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-1100.928.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-1100.929.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
PackedApolane130.965.Dutoit, 1991Column length: 3.7 m
CapillaryOV-1100.927.2Engewald, Billing, et al., 1987Column length: 50. m; Column diameter: 0.3 mm
CapillarySE-30130.941.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySE-3080.920.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySqualane86.928.5Nabivach and Kirilenko, 1979N2; Column length: 50. m
CapillarySqualane42.5908.Engewald, Epsch, et al., 1974N2; Column length: 100. m; Column diameter: 0.23 mm
CapillarySqualane80.925.Engewald, Epsch, et al., 1974N2; Column length: 100. m; Column diameter: 0.23 mm
CapillarySqualane100.933.Besson and Gäumann, 1973Column length: 50. m; Column diameter: 0.25 mm
CapillaryApiezon L100.957.Besson and Gäumann, 1973Column length: 50. m; Column diameter: 0.25 mm
CapillarySqualane120.927.Agrawal, Tesarík, et al., 1972N2, Celite 545; Column length: 50. m; Column diameter: 0.3 mm
CapillarySqualane86.925.Agrawal, Tesarík, et al., 1972N2, Celite 545; Column length: 50. m; Column diameter: 0.3 mm
CapillaryVacuum Grease Oil (VM-4)35.916.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)45.920.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)50.923.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)58.926.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)68.930.Sidorov, Petrova, et al., 1972 
PackedSqualane49.912.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.920.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.928.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
CapillarySqualane100.934.Schomburg, 1967Ar; Column length: 100. m
CapillarySqualane120.946.Schomburg, 1966 
CapillarySqualane70.920.Schomburg, 1966 
CapillarySqualane80.925.Schomburg, 1966 
PackedSqualane150.946.Schomburg, 1964 

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryApiezon L948.Louis, 1971N2, 1. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH911.White, Hackett, et al., 1992100. m/0.25 mm/0.5 «mu»m, He, 1. K/min; Tstart: 30. C; Tend: 220. C
PackedSE-30932.Buchman, Cao, et al., 1984He, Chromosorb AW, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1910.Peng, 200015. m/0.53 mm/1. «mu»m, He; Program: 40C(3min) => 8C/min => 200(1min) => 5C/min => 300C(25min)
PackedSE-30932.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)
PackedSE-30932.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1036.Peng, 200015. m/0.53 mm/1. «mu»m, He, 40. C @ 3. min, 5. K/min, 220. C @ 30. min
CapillaryHP-Wax1023.Peng, 200015. m/0.53 mm/1. «mu»m, He, 40. C @ 3. min, 5. K/min, 220. C @ 30. min
PackedCarbowax 20M1043.Buchman, Cao, et al., 1984He, Supelcoport, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH918.Supelco, 2012100. m/0.25 mm/0.50 «mu»m, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySqualane920.Chen, 2008Program: not specified
PackedSE-30947.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)
PackedSqualane927.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min => 35 => 4C/min => 95C(hold)
PackedSE-30947.Robinson and Odell, 1971, 2Chrom W; Column length: 6.1 m; Program: 50C(10min) => 20C/min(2min) => 90C(6min) => 10C/min(6min) => (hold at 150C)

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1014.Peng, Yang, et al., 1991Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Spitzer and Huffman, 1947
Spitzer, R.; Huffman, H.M., The heats of combustion of cyclopentane, cyclohexane, cycloheptane and cyclooctane, J. Am. Chem. Soc., 1947, 69, 211-213. [all data]

Finke H.L., 1956
Finke H.L., Cycloheptane, cyclooctane, and 1,3,5-cycloheptatriene. Low-temperature thermal properties, vapor pressure, and derived chemical thermodynamic properties, J. Am. Chem. Soc., 1956, 78, 5469-5476. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., Thermodynamic properties of twenty-one monocyclic hydrocarbons, J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Chang S., 1970
Chang S., The heats of combustion and strain energies of bicyclo[n.m.0]alkanes, J. Am. Chem. Soc., 1970, 92, 3109-3118. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Kaarsemaker and Coops, 1952
Kaarsemaker, S.; Coops, J., Thermal quantities of some cycloparaffins. Part III. Results of measurements, Rec. Trav. Chim. Pays/Bas, 1952, 71, 261. [all data]

Finke, Scott, et al., 1956
Finke, H.L.; Scott, D.W.; Gross, M.E.; Messerly, J.F.; Waddington, G., Cycloheptane, cyclooctane and 1,3,5-cycloheptatriene. Low temperature thermal properties, vapor pressure and derived chemical thermodynamic properties, J. Am. Chem. Soc., 1956, 78, 5469-5476. [all data]

Ruzieka and Schlapfer, 1933
Ruzieka, L.; Schlapfer, P., Zur kenntnis des kohlenstoffringes XXII. Uber die verbrennungswarme bei hochgliedrigen ringverbindungen, Helv. Chim. Acta, 1933, 16, 162-169. [all data]

Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I., Excess thermodynamic properties of (cis-decalin or trans-decalin + cyclohexane or methylcyclohexane or cyclooctane) at 298.15 K, J. Chem. Thermodynam., 1988, 20, 1307-1314. [all data]

Tanaka, 1985
Tanaka, R., Excess heat capacities for mixtures of benzene with cyclopentane, methylcyclohexane, and cyclooctane at 298.15 K, J. Chem. Eng. Data, 1985, 30, 267-269. [all data]

Fortier, D'Arcy, et al., 1979
Fortier, J.-L.; D'Arcy, P.J.; Benson, G.C., Heat capacities of binary cycloalkane mixtures at 298.15 K, Thermochim. Acta, 1979, 28, 37-43. [all data]

Wilhelm, Faradjzadeh, et al., 1979
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E., Molar excess heat capacities and excess volumes of 1,2-dichloroethane + cyclooctane, + mesitylene, and + tetrachloromethane, J. Chem. Thermodynam., 1979, 11, 979-984. [all data]

Jolicoeur, Boileau, et al., 1975
Jolicoeur, C.; Boileau, J.; Bazinet, S.; Picker, P., Thermodynamic properties of aqueous organic solutes in relation to their structure. Part II. Apparent molal volumes and heat capacities of c-alkylamine hydrobromides in water, Can. J. Chem., 1975, 53, 716-722. [all data]

Finke, Scott, et al., 1956, 2
Finke, H.L.; Scott, D.W.; Gross, M.E.; Messerly, J.F.; Waddington, G., Cycloheptane, Cyclooctane and 1,3,5-Cycloheptatriene. Low Temperature Thermal Properties, Vapor Pressure and Derived Chemical Thermodynamic Prop., J. Am. Chem. Soc., 1956, 78, 5469. [all data]

Waddington, 1955
Waddington, G., Personal Commun., 1955. [all data]

Kaarsemaker, 1951
Kaarsemaker, S., , Thesis, 1951. [all data]

Daubert, 1996
Daubert, T.E., Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes, J. Chem. Eng. Data, 1996, 41, 365-372. [all data]

Young, 1972
Young, C.L., Gas-liquid critical properties of the cycloalkanes and their mixtures, Aust. J. Chem., 1972, 25, 1625-30. [all data]

Hicks and Young, 1971
Hicks, C.P.; Young, C.L., Critical Temperatures of Mixtures of Quasi-spherical Molecules. Alicyclic Hydrocarbons + Benzene, + Hexafluorobenzene and + Perfluorocyclohexane, Trans. Faraday Soc., 1971, 67, 1605-11. [all data]

Finke, Scott, et al., 1956, 3
Finke, H.L.; Scott, D.W.; Gross, M.E.; Messerly, J.F.; Waddington, G., Cycloheptane, cyclooctane and 1,3,5-cycloheptatriene. Low temperature thermal properties, vapor pressure and derived chemical thermodynamic properties, J. Am. Chem. Soc., 1956, 78, 5469-54. [all data]

Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc., Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Wu, Locke, et al., 1991
Wu, Huey S.; Locke, William E.; Sandler, Stanley I., Isothermal vapor-liquid equilibrium of binary mixtures containing morpholine, J. Chem. Eng. Data, 1991, 36, 1, 127-130, https://doi.org/10.1021/je00001a037 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Meyer and Hotz, 1976
Meyer, Edwin F.; Hotz, Carol A., Cohesive energies in polar organic liquids. 3. Cyclic ketones, J. Chem. Eng. Data, 1976, 21, 3, 274-279, https://doi.org/10.1021/je60070a035 . [all data]

Anand, Grolier, et al., 1975
Anand, Subhash C.; Grolier, Jean P.E.; Kiyohara, Osamu; Halpin, Carl J.; Benson, George C., Thermodynamic properties of some cycloalkane-cycloalkanol systems at 298. 15K. III, J. Chem. Eng. Data, 1975, 20, 2, 184-189, https://doi.org/10.1021/je60065a020 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Doering, Roth, et al., 1989
Doering, W.E.; Roth, W.R.; Bauer, F.; Breuckmann, R.; Ebbrecht, T.; Herbold, M.; Schmidt, R.; Lennartz, H-W.; Lenoir, D.; Boese, R., Rotational barriers of strained olefines, Chem. Ber., 1989, 122, 1263-1266. [all data]

Roth and Lennartz, 1980
Roth, W.R.; Lennartz, H.W., Heats of hydrogenation. I. Determination of heats of hydrogenation with an isothermal titration calorimeter, Chem. Ber., 1980, 113, 1806-1817. [all data]

Rogers, Von Voithenberg, et al., 1978
Rogers, D.W.; Von Voithenberg, H.; Allinger, N.L., Heats of hydrogenation of the cis and trans isomers of cyclooctene, J. Org. Chem., 1978, 43, 360-361. [all data]

Turner and Meador, 1957
Turner, R.B.; Meador, W.R., Heats of hydrogenation. IV. Hydrogenation of some cis- and trans-cycloolefins, J. Am. Chem. Soc., 1957, 79, 4133-4136. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G., Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes, J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]

Turner, Meador, et al., 1957
Turner, R.B.; Meador, W.R.; Doering, W.E.; Knox, L.H.; Mayer, J.R.; Wiley, D.W., Heats of hydrogenation. III. Hydrogenation of cycllooctatetraene and of some seven-membered non-benzenoid aromatic compounds, J. Am. Chem. Soc., 1957, 79, 4127-4133. [all data]

Roth, Hopf, et al., 1994
Roth, W.R.; Hopf, H.; Horn, C., Propargyl-Stabilisierungsenergie, Chem. Ber., 1994, 127, 1781-1795. [all data]

Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J., Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins, J. Am. Chem. Soc., 1973, 95, 790-792. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Sieck and Mautner(Meot-Ner), 1982
Sieck, L.W.; Mautner(Meot-Ner), M., Ionization energies and entropies of cycloalkanes. Kinetics of free energy controlled charge-transfer reactions, J. Phys. Chem., 1982, 86, 3646. [all data]

Golubitskii, Kulikov, et al., 1979
Golubitskii, A.E.; Kulikov, N.S.; Zyakun, A.M.; Valovoi, V.A.; Alekseev, A.M.; Volkov, V.N., Photoionization mass spectra of alicyclic compounds with various substituents, and their ionization energies and appearance energies, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1979, 11, 2602. [all data]

Puttemans, 1974
Puttemans, J.P., Ionisation de cycloalcanes (C5 a C12) en spectroscopie photoelectronique et par impact electronique, Ing. Chim. (Brussels), 1974, 56, 64. [all data]

Batich, Bischof, et al., 1973
Batich, C.; Bischof, P.; Heilbronner, E., The photoelectron spectra of cyclooctatetraene and its hydrogenated derivatives, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 333. [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Zhang, Li, et al., 1992
Zhang, M.J.; Li, S.D.; Chen, B.J., Compositional studies of high-temperature coal tar by GC/FTIR analysis of light oil fractions, Chromatographia, 1992, 33, 3/4, 138-146, https://doi.org/10.1007/BF02275894 . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Engewald, Billing, et al., 1987
Engewald, W.; Billing, U.; Welsch, T.; Haufe, G., Structure-retention correlations of hydrocarbons in gas-liquid and gas-solid chromatography. Cycloalkenes and cycloalkadienes, Chromatographia, 1987, 23, 8, 590-594, https://doi.org/10.1007/BF02324870 . [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Nabivach and Kirilenko, 1979
Nabivach, V.M.; Kirilenko, A.V., The use of retention indices for identifying the components of crude benzene, Solid Fuel Chem. (Engl. Transl.), 1979, 13, 3, 82-87. [all data]

Engewald, Epsch, et al., 1974
Engewald, W.; Epsch, K.; Graefe, J.; Welsch, Th., Molekülstruktur und retentionsverhalten. II. Retentionsverhalten cycloaliphatischer kohlenwasser-stoffe bei der gas-adsorptions- und gas-verteilungschromatographie, J. Chromatogr., 1974, 91, 623-631, https://doi.org/10.1016/S0021-9673(01)97943-9 . [all data]

Besson and Gäumann, 1973
Besson, R.; Gäumann, T., Indices de rétention de cycloalcanes, cycloalcènes, bicycloalkyles, cycloalkyl-cycloalcényles et bicycloalcényles en chromatographie en phase gazeuse, Helv. Chim. Acta, 1973, 56, 3, 1159-1164, https://doi.org/10.1002/hlca.19730560339 . [all data]

Agrawal, Tesarík, et al., 1972
Agrawal, B.B.; Tesarík, K.; Janák, J., Gas chromatographic characterization of sulphur compounds in the 93-162° gasoline cut from Romashkino crude oil using Kováts retention indices, J. Chromatogr., 1972, 65, 1, 207-215, https://doi.org/10.1016/S0021-9673(00)86933-2 . [all data]

Sidorov, Petrova, et al., 1972
Sidorov, R.I.; Petrova, V.I.; Ivanova, M.P., Qualitative analysis of wide-boiling fraction C5-C10 with capillary chromatography in Processes in chromatographic columns. Vol.17, 1972, 14-25. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Schomburg, 1967
Schomburg, G., Struktur und Retentionsverhalten von Offenkettigen und Cyclischen Kohlenwasserstoffen und Deren Einfacher Substitutionsprodukte, Anal. Chim. Acta., 1967, 38, 45-64, https://doi.org/10.1016/S0003-2670(01)80560-2 . [all data]

Schomburg, 1966
Schomburg, G., Gaschromatographische Retentionsdaten und struktur chemischer verbindungen. III. Alkylverzweigte und ungesättigte cyclische Kohlenwasserstoffe, J. Chromatogr., 1966, 23, 18-41, https://doi.org/10.1016/S0021-9673(01)98653-4 . [all data]

Schomburg, 1964
Schomburg, G., Gas-Chromatographische Retentionsdaten und Struktur Chemischer Verbindungen. I. Verzweigte Aliphatische und Alicyclische Carbonsäure-Methylester, J. Chromatogr., 1964, 14, 157-177, https://doi.org/10.1016/S0021-9673(00)86608-X . [all data]

Louis, 1971
Louis, R., Kovats-index-tafeln zur gaschromatographischen analyse von kohlenwasserstoffgemischen, Erdoel Kohle Erdgas Petrochem., 1971, 24, 2, 88-94. [all data]

White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S., Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane, J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211 . [all data]

Buchman, Cao, et al., 1984
Buchman, O.; Cao, G.-Y.; Peng, C.T., Structure assignment by retention index in gas-liquid radiochromatography of substituted cyclohexenes, J. Chromatogr., 1984, 312, 75-90, https://doi.org/10.1016/S0021-9673(01)92765-7 . [all data]

Peng, 2000
Peng, C.T., Prediction of retention indices. V. Influence of electronic effects and column polarity on retention index, J. Chromatogr. A, 2000, 903, 1-2, 117-143, https://doi.org/10.1016/S0021-9673(00)00901-8 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Chen, 2008
Chen, H.-F., Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression, Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003 . [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]

Robinson and Odell, 1971, 2
Robinson, P.G.; Odell, A.L., Comparison of isothermal and non-linear temperature programmed gas chromatography. The temperature dependence of the retention indices of a number of hydrocarbons on squalane and SE-30, J. Chromatogr., 1971, 57, 11-17, https://doi.org/10.1016/0021-9673(71)80002-X . [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References