Cyclooctane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-169.4 ± 1.6kJ/molCcbSpitzer and Huffman, 1947Reanalyzed by Cox and Pilcher, 1970, Original value = -169.9 ± 2.5 kJ/mol; ALS
Quantity Value Units Method Reference Comment
Δcliquid-5265.7 ± 0.9kJ/molCcbKaarsemaker and Coops, 1952Corresponding Δfliquid = -169.0 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-5265.3 ± 1.6kJ/molCcbSpitzer and Huffman, 1947Reanalyzed by Cox and Pilcher, 1970, Original value = -5264.9 ± 1.6 kJ/mol; Corresponding Δfliquid = -169.4 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid262.00J/mol*KN/AFinke, Scott, et al., 1956DH
Quantity Value Units Method Reference Comment
Δcsolid-5252.6kJ/molCcbRuzieka and Schlapfer, 1933Heat of combustion corrected for pressure; Corresponding Δfsolid = -182. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
215.78298.15Shiohama, Ogawa, et al., 1988DH
215.53298.15Tanaka, 1985DH
215.461298.15Fortier, D'Arcy, et al., 1979DH
214.53298.15Wilhelm, Faradjzadeh, et al., 1979DH
214.24298.15Jolicoeur, Boileau, et al., 1975DH
215.48298.15Finke, Scott, et al., 1956T = 12 to 330 K.; DH

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil422. ± 6.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus285. ± 5.KAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple287.94KN/AFinke, Scott, et al., 1956, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.07 K; TRC
Ttriple287.98KN/AFinke, Scott, et al., 1956, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple287.940KN/AWaddington, 1955Uncertainty assigned by TRC = 0.05 K; date of correspondence not given on card; TRC
Ttriple287.970KN/AWaddington, 1955Uncertainty assigned by TRC = 0.02 K; date of correspondence not given on card; TRC
Ttriple288.0KN/AKaarsemaker, 1951Crystal phase 1 phase; Uncertainty assigned by TRC = 3. K; TRC
Quantity Value Units Method Reference Comment
Tc647.2 ± 0.5KN/ADaubert, 1996 
Tc674.2KN/AYoung, 1972Uncertainty assigned by TRC = 0.6 K; TRC
Tc647.2KN/AHicks and Young, 1971Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Pc35.6 ± 0.4barN/ADaubert, 1996 
Pc35.50barN/AYoung, 1972Uncertainty assigned by TRC = 0.40 bar; TRC
Pc35.60barN/AHicks and Young, 1971Uncertainty assigned by TRC = 0.4053 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.410l/molN/ADaubert, 1996 
Vc0.411l/molN/AYoung, 1972Uncertainty assigned by TRC = 0.007 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc2.44 ± 0.04mol/lN/ADaubert, 1996 
Quantity Value Units Method Reference Comment
Δvap43.35 ± 0.21kJ/molVFinke, Scott, et al., 1956, 3ALS
Δvap43.3 ± 0.2kJ/molN/AFinke, Scott, et al., 1956AC
Δvap44.7kJ/molVKaarsemaker and Coops, 1952ALS
Δvap43.5kJ/molESpitzer and Huffman, 1947ALS

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
424.20.987Aldrich Chemical Company Inc., 1990BS
421.70.999Weast and Grasselli, 1989BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
40.3373.N/AWu, Locke, et al., 1991Based on data from 358. to 413. K.; AC
43.3304.AStephenson and Malanowski, 1987Based on data from 289. to 369. K.; AC
39.4384.A,EBStephenson and Malanowski, 1987Based on data from 369. to 467. K. See also Finke, Scott, et al., 1956.; AC
39.3388.EBMeyer and Hotz, 1976Based on data from 373. to 434. K.; AC
43.1306.N/AAnand, Grolier, et al., 1975Based on data from 291. to 323. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
369.86 to 467.63.988051438.687-63.024Finke, Scott, et al., 1956Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
58.7166.BBondi, 1963AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
2.41288.Acree, 1991AC

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
6.3057166.5crystaline, IIIcrystaline, IIFinke, Scott, et al., 1956DH
0.4782183.8crystaline, IIcrystaline, IFinke, Scott, et al., 1956DH
2.4096287.98crystaline, IliquidFinke, Scott, et al., 1956DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
37.87166.5crystaline, IIIcrystaline, IIFinke, Scott, et al., 1956DH
2.60183.8crystaline, IIcrystaline, IFinke, Scott, et al., 1956DH
8.37287.98crystaline, IliquidFinke, Scott, et al., 1956DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + Cyclooctene, (Z)- = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Δr-102.kJ/molChydDoering, Roth, et al., 1989liquid phase
Δr-103. ± 0.8kJ/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane
Δr-96.40 ± 0.71kJ/molChydRogers, Von Voithenberg, et al., 1978liquid phase; solvent: Hexane
Δr-96.1 ± 0.4kJ/molChydTurner and Meador, 1957liquid phase; solvent: Acetic acid
Δr-97.40 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -98.4 ± 0.2 kJ/mol; At 355 K

Hydrogen + trans-Cyclooctene = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Δr-144. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase; see Doering, Roth, et al., 1989
Δr-144.0 ± 1.8kJ/molChydRogers, Von Voithenberg, et al., 1978liquid phase; solvent: Hexane
Δr-134.9 ± 0.88kJ/molChydTurner and Meador, 1957liquid phase; solvent: Acetic acid

3Hydrogen + 1,3,5-Cyclooctatriene = Cyclooctane

By formula: 3H2 + C8H10 = C8H16

Quantity Value Units Method Reference Comment
Δr-319.6 ± 1.8kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Acetic acid
Δr-302.8 ± 1.1kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid

2Hydrogen + Cyclooctyne = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Δr-291. ± 0.8kJ/molChydRoth, Hopf, et al., 1994liquid phase; solvent: Isooctane
Δr-289.kJ/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid

1,5-Cyclooctadiene + 2Hydrogen = Cyclooctane

By formula: C8H12 + 2H2 = C8H16

Quantity Value Units Method Reference Comment
Δr-230. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase
Δr-224.6 ± 0.08kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid

2Hydrogen + 1,3-Cyclooctadiene, (Z,Z)- = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Δr-208.kJ/molChydRoth, Adamczak, et al., 1991liquid phase
Δr-204.8 ± 0.3kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid

1,4-Cyclooctadiene + 2Hydrogen = Cyclooctane

By formula: C8H12 + 2H2 = C8H16

Quantity Value Units Method Reference Comment
Δr-217.9 ± 1.2kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid

3Hydrogen + 1,3,6-Cyclooctatriene = Cyclooctane

By formula: 3H2 + C8H10 = C8H16

Quantity Value Units Method Reference Comment
Δr-334.3 ± 0.71kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid

4Hydrogen + 1,3,5,7-Cyclooctatetraene = Cyclooctane

By formula: 4H2 + C8H8 = C8H16

Quantity Value Units Method Reference Comment
Δr-409.9 ± 0.2kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid

4Hydrogen + 1,5-Cyclooctadiyne = Cyclooctane

By formula: 4H2 + C8H8 = C8H16

Quantity Value Units Method Reference Comment
Δr640. ± 1.kJ/molChydRoth, Hopf, et al., 1994liquid phase; solvent: Isooctane

Hydrogen + Cyclooctene = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Δr-94. ± 1.kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Acetic acid

2Hydrogen + 1,5-Cyclooctadiene, (E,E)- = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Δr-320. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase

2Hydrogen + (Z,E)-1,3-Cyclooctadiene = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Δr-271. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase

2Hydrogen + 1,5-Cyclooctadiene, (E,Z)- = Cyclooctane

By formula: 2H2 + C8H12 = C8H16

Quantity Value Units Method Reference Comment
Δr-282. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase

Henry's Law data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0098 QN/ASeveral references are given in the list of Henry's law constants but not assigned to specific species.
0.0095 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.

References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Spitzer and Huffman, 1947
Spitzer, R.; Huffman, H.M., The heats of combustion of cyclopentane, cyclohexane, cycloheptane and cyclooctane, J. Am. Chem. Soc., 1947, 69, 211-213. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Kaarsemaker and Coops, 1952
Kaarsemaker, S.; Coops, J., Thermal quantities of some cycloparaffins. Part III. Results of measurements, Rec. Trav. Chim. Pays/Bas, 1952, 71, 261. [all data]

Finke, Scott, et al., 1956
Finke, H.L.; Scott, D.W.; Gross, M.E.; Messerly, J.F.; Waddington, G., Cycloheptane, cyclooctane and 1,3,5-cycloheptatriene. Low temperature thermal properties, vapor pressure and derived chemical thermodynamic properties, J. Am. Chem. Soc., 1956, 78, 5469-5476. [all data]

Ruzieka and Schlapfer, 1933
Ruzieka, L.; Schlapfer, P., Zur kenntnis des kohlenstoffringes XXII. Uber die verbrennungswarme bei hochgliedrigen ringverbindungen, Helv. Chim. Acta, 1933, 16, 162-169. [all data]

Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I., Excess thermodynamic properties of (cis-decalin or trans-decalin + cyclohexane or methylcyclohexane or cyclooctane) at 298.15 K, J. Chem. Thermodynam., 1988, 20, 1307-1314. [all data]

Tanaka, 1985
Tanaka, R., Excess heat capacities for mixtures of benzene with cyclopentane, methylcyclohexane, and cyclooctane at 298.15 K, J. Chem. Eng. Data, 1985, 30, 267-269. [all data]

Fortier, D'Arcy, et al., 1979
Fortier, J.-L.; D'Arcy, P.J.; Benson, G.C., Heat capacities of binary cycloalkane mixtures at 298.15 K, Thermochim. Acta, 1979, 28, 37-43. [all data]

Wilhelm, Faradjzadeh, et al., 1979
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E., Molar excess heat capacities and excess volumes of 1,2-dichloroethane + cyclooctane, + mesitylene, and + tetrachloromethane, J. Chem. Thermodynam., 1979, 11, 979-984. [all data]

Jolicoeur, Boileau, et al., 1975
Jolicoeur, C.; Boileau, J.; Bazinet, S.; Picker, P., Thermodynamic properties of aqueous organic solutes in relation to their structure. Part II. Apparent molal volumes and heat capacities of c-alkylamine hydrobromides in water, Can. J. Chem., 1975, 53, 716-722. [all data]

Finke, Scott, et al., 1956, 2
Finke, H.L.; Scott, D.W.; Gross, M.E.; Messerly, J.F.; Waddington, G., Cycloheptane, Cyclooctane and 1,3,5-Cycloheptatriene. Low Temperature Thermal Properties, Vapor Pressure and Derived Chemical Thermodynamic Prop., J. Am. Chem. Soc., 1956, 78, 5469. [all data]

Waddington, 1955
Waddington, G., Personal Commun., 1955. [all data]

Kaarsemaker, 1951
Kaarsemaker, S., , Thesis, 1951. [all data]

Daubert, 1996
Daubert, T.E., Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes, J. Chem. Eng. Data, 1996, 41, 365-372. [all data]

Young, 1972
Young, C.L., Gas-liquid critical properties of the cycloalkanes and their mixtures, Aust. J. Chem., 1972, 25, 1625-30. [all data]

Hicks and Young, 1971
Hicks, C.P.; Young, C.L., Critical Temperatures of Mixtures of Quasi-spherical Molecules. Alicyclic Hydrocarbons + Benzene, + Hexafluorobenzene and + Perfluorocyclohexane, Trans. Faraday Soc., 1971, 67, 1605-11. [all data]

Finke, Scott, et al., 1956, 3
Finke, H.L.; Scott, D.W.; Gross, M.E.; Messerly, J.F.; Waddington, G., Cycloheptane, cyclooctane and 1,3,5-cycloheptatriene. Low temperature thermal properties, vapor pressure and derived chemical thermodynamic properties, J. Am. Chem. Soc., 1956, 78, 5469-54. [all data]

Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc., Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Wu, Locke, et al., 1991
Wu, Huey S.; Locke, William E.; Sandler, Stanley I., Isothermal vapor-liquid equilibrium of binary mixtures containing morpholine, J. Chem. Eng. Data, 1991, 36, 1, 127-130, https://doi.org/10.1021/je00001a037 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Meyer and Hotz, 1976
Meyer, Edwin F.; Hotz, Carol A., Cohesive energies in polar organic liquids. 3. Cyclic ketones, J. Chem. Eng. Data, 1976, 21, 3, 274-279, https://doi.org/10.1021/je60070a035 . [all data]

Anand, Grolier, et al., 1975
Anand, Subhash C.; Grolier, Jean P.E.; Kiyohara, Osamu; Halpin, Carl J.; Benson, George C., Thermodynamic properties of some cycloalkane-cycloalkanol systems at 298. 15K. III, J. Chem. Eng. Data, 1975, 20, 2, 184-189, https://doi.org/10.1021/je60065a020 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Doering, Roth, et al., 1989
Doering, W.E.; Roth, W.R.; Bauer, F.; Breuckmann, R.; Ebbrecht, T.; Herbold, M.; Schmidt, R.; Lennartz, H-W.; Lenoir, D.; Boese, R., Rotational barriers of strained olefines, Chem. Ber., 1989, 122, 1263-1266. [all data]

Roth and Lennartz, 1980
Roth, W.R.; Lennartz, H.W., Heats of hydrogenation. I. Determination of heats of hydrogenation with an isothermal titration calorimeter, Chem. Ber., 1980, 113, 1806-1817. [all data]

Rogers, Von Voithenberg, et al., 1978
Rogers, D.W.; Von Voithenberg, H.; Allinger, N.L., Heats of hydrogenation of the cis and trans isomers of cyclooctene, J. Org. Chem., 1978, 43, 360-361. [all data]

Turner and Meador, 1957
Turner, R.B.; Meador, W.R., Heats of hydrogenation. IV. Hydrogenation of some cis- and trans-cycloolefins, J. Am. Chem. Soc., 1957, 79, 4133-4136. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G., Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes, J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]

Turner, Meador, et al., 1957
Turner, R.B.; Meador, W.R.; Doering, W.E.; Knox, L.H.; Mayer, J.R.; Wiley, D.W., Heats of hydrogenation. III. Hydrogenation of cycllooctatetraene and of some seven-membered non-benzenoid aromatic compounds, J. Am. Chem. Soc., 1957, 79, 4127-4133. [all data]

Roth, Hopf, et al., 1994
Roth, W.R.; Hopf, H.; Horn, C., Propargyl-Stabilisierungsenergie, Chem. Ber., 1994, 127, 1781-1795. [all data]

Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J., Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins, J. Am. Chem. Soc., 1973, 95, 790-792. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References