1,3-Diazine
- Formula: C4H4N2
- Molecular weight: 80.0880
- IUPAC Standard InChIKey: CZPWVGJYEJSRLH-UHFFFAOYSA-N
- CAS Registry Number: 289-95-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Pyrimidine; m-Diazine; Metadiazine; Miazine; 1,3-Diazabenzene; Py; Pyr
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C10H5CrNO5 (solution) + (solution) = (solution) + (solution)
By formula: C10H5CrNO5 (solution) + CO (solution) = C6CrO6 (solution) + C4H4N2 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -61.9 | kJ/mol | KinS | Wovkulich and Atwood, 1980 | solvent: Hexane; The data rely on the enthalpy and entropy of activation for the forward reaction, 106.3 ± 4.6 kJ/mol and 13.0±14.6 J/(mol K) Dennenberg and Darensbourg, 1972, and also on the enthalpy and entropy of activation for the Cr-CO dissociation in Cr(CO)6, 168.2 ± 2.5 kJ/mol and 94.6±6.3 J/(mol K) Graham and Angelici, 1967. The latter data were obtained in decalin; MS |
(cr) + (l) = C10H5NO5W (cr) + (g)
By formula: C6O6W (cr) + C4H4N2 (l) = C10H5NO5W (cr) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.6 | kJ/mol | N/A | Nakashima and Adamson, 1982 | The reaction enthalpy was calculated from the enthalpy of the reaction W(CO)6(solution) + py(solution) = W(CO)5(py)(solution) + CO(solution) in cyclohexane, 27.4 ± 2.9 kJ/mol, together with the enthalpies of solution of W(CO)6(cr), W(CO)5(py)(cr), and py(l), 35.7, 36.4, and 7.9 kJ/mol, respectively Nakashima and Adamson, 1982.; MS |
C4H3N2- + =
By formula: C4H3N2- + H+ = C4H4N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1612. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1576.5 ± 2.9 | kJ/mol | N/A | Wren, Vogelhuber, et al., 2012 | gas phase; B |
ΔrG° | 1577. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B |
(solution) + (solution) = C10H5NO5W (solution) + (solution)
By formula: C6O6W (solution) + C4H4N2 (solution) = C10H5NO5W (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.4 ± 2.9 | kJ/mol | PC | Nakashima and Adamson, 1982 | solvent: Cyclohexane; MS |
ΔrH° | 24.9 ± 2.9 | kJ/mol | PC | Nakashima and Adamson, 1982 | solvent: Benzene; MS |
ΔrH° | 18.4 ± 0.4 | kJ/mol | PC | Nakashima and Adamson, 1982 | solvent: Tetrahydrofuran; MS |
C39H68O3P2W (solution) + (solution) = C44H71NO3P2W (solution) + (g)
By formula: C39H68O3P2W (solution) + C4H4N2 (solution) = C44H71NO3P2W (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -39.7 ± 2.1 | kJ/mol | RSC | Gonzalez, Zhang, et al., 1988 | solvent: Toluene; MS |
ΔrH° | -41.8 ± 2.1 | kJ/mol | RSC | Gonzalez, Zhang, et al., 1988 | solvent: Tetrahydrofuran; MS |
C14H10CrN2O4 (cr) = 2 (g) + 4 (g) + (cr)
By formula: C14H10CrN2O4 (cr) = 2C4H4N2 (g) + 4CO (g) + Cr (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >199. | kJ/mol | TD-HFC | Adedeji, Connor, et al., 1978 | The reaction enthalpy is a low limit Adedeji, Connor, et al., 1978.; MS |
C8H6MoO3 (solution) + 3 (solution) = C18H15MoN3O3 (solution) + (solution)
By formula: C8H6MoO3 (solution) + 3C4H4N2 (solution) = C18H15MoN3O3 (solution) + C5H6 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -69.9 ± 2.9 | kJ/mol | RSC | Nolan, Hoff, et al., 1985 | solvent: Pyridine; Reaction temperature: 323 K; MS |
+ = C4H4N3O-
By formula: NO- + C4H4N2 = C4H4N3O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.5 ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
C9H9CrN3O3 (solution) + 3 (solution) = C18H15CrN3O3 (solution) + 3 (solution)
By formula: C9H9CrN3O3 (solution) + 3C4H4N2 (solution) = C18H15CrN3O3 (solution) + 3C2H3N (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -48.1 ± 3.8 | kJ/mol | RSC | Mukerjee, Lang, et al., 1992 | solvent: Tetrahydrofuran; MS |
C7H9Cl2NPd (solution) + (l) = (PdCl2(C5H5N)2) (solution) + (solution)
By formula: C7H9Cl2NPd (solution) + C4H4N2 (l) = (PdCl2(C5H5N)2) (solution) + C2H4 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -57.7 ± 1.7 | kJ/mol | RSC | Partenheimer and Durham, 1974 | solvent: Dichloromethane; MS |
C10H5NO5W (cr) + (g) = (g) + (g)
By formula: C10H5NO5W (cr) + CO (g) = C6O6W (g) + C4H4N2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 83. ± 10. | kJ/mol | DSC | Daamen, van der Poel, et al., 1979 | Please also see Meester, Vriends, et al., 1976.; MS |
C12H16CrO5 (solution) + (solution) = (solution) + C10H5CrNO5 (solution)
By formula: C12H16CrO5 (solution) + C4H4N2 (solution) = C7H16 (solution) + C10H5CrNO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -84.1 ± 1.7 | kJ/mol | PAC | Yang, Vaida, et al., 1988 | solvent: Heptane; MS |
C39H66MoO3P3 (solution) + (solution) = C44H71MoNO3P2 (solution)
By formula: C39H66MoO3P3 (solution) + C4H4N2 (solution) = C44H71MoNO3P2 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -70.7 ± 2.5 | kJ/mol | RSC | Zhang, Gonzalez, et al., 1991 | solvent: Toluene; MS |
(cr) + 3 (g) = C18H15MoN3O3 (cr) + 3 (g)
By formula: C6MoO6 (cr) + 3C4H4N2 (g) = C18H15MoN3O3 (cr) + 3CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -50.4 ± 7.0 | kJ/mol | HFC | Adedeji, Connor, et al., 1978 | MS |
(cr) + 3 (g) = C18H15N3O3W (g) + 3 (g)
By formula: C6O6W (cr) + 3C4H4N2 (g) = C18H15N3O3W (g) + 3CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -54.7 ± 8.4 | kJ/mol | HFC | Adedeji, Connor, et al., 1978 | MS |
C10H5CrNO5 (cr) + (g) = (g) + (g)
By formula: C10H5CrNO5 (cr) + CO (g) = C6CrO6 (g) + C4H4N2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 75. ± 6. | kJ/mol | DSC | Daamen, van der Poel, et al., 1979 | MS |
C10H5MoNO5 (cr) + (g) = (g) + (g)
By formula: C10H5MoNO5 (cr) + CO (g) = C6MoO6 (g) + C4H4N2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 57. ± 3. | kJ/mol | DSC | Daamen, van der Poel, et al., 1979 | MS |
By formula: Fe+ + C4H4N2 = (Fe+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 199. ± 7.9 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Cr+ + C4H4N2 = (Cr+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 177. ± 6.3 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Ti+ + C4H4N2 = (Ti+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 214. ± 10. | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Mn+ + C4H4N2 = (Mn+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 159. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Sc+ + C4H4N2 = (Sc+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 214. ± 9.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Mg+ + C4H4N2 = (Mg+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 5.9 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: V+ + C4H4N2 = (V+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 204. ± 7.1 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Ni+ + C4H4N2 = (Ni+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 244. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Al+ + C4H4N2 = (Al+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 159. ± 5.9 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Zn+ + C4H4N2 = (Zn+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 208. ± 7.5 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Co+ + C4H4N2 = (Co+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 245. ± 13. | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Cu+ + C4H4N2 = (Cu+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 249. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
Ion clustering data
Go To: Top, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Al+ + C4H4N2 = (Al+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 159. ± 5.9 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Co+ + C4H4N2 = (Co+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 245. ± 13. | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Cr+ + C4H4N2 = (Cr+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 177. ± 6.3 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Cu+ + C4H4N2 = (Cu+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 249. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Fe+ + C4H4N2 = (Fe+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 199. ± 7.9 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Mg+ + C4H4N2 = (Mg+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 5.9 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Mn+ + C4H4N2 = (Mn+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 159. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
+ = C4H4N3O-
By formula: NO- + C4H4N2 = C4H4N3O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.5 ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: Ni+ + C4H4N2 = (Ni+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 244. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Sc+ + C4H4N2 = (Sc+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 214. ± 9.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Ti+ + C4H4N2 = (Ti+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 214. ± 10. | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: V+ + C4H4N2 = (V+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 204. ± 7.1 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Zn+ + C4H4N2 = (Zn+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 208. ± 7.5 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
References
Go To: Top, Reaction thermochemistry data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wovkulich and Atwood, 1980
Wovkulich, M.J.; Atwood, J.D.,
J. Organometal. Chem., 1980, 184, 77. [all data]
Dennenberg and Darensbourg, 1972
Dennenberg, R.J.; Darensbourg, D.J.,
Inorg. Chem., 1972, 11, 72. [all data]
Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J.,
Inorg. Chem., 1967, 6, 2082. [all data]
Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W.,
J. Phys. Chem., 1982, 86, 2905. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Wren, Vogelhuber, et al., 2012
Wren, S.W.; Vogelhuber, K.M.; Garver, J.M.; Kato, S.; Sheps, L.; Bierbaum, V.M.; Lineberger, W.C.,
C-H Bond Strengths and Acidities in Aromatic Systems: Effects of Nitrogen Incorporation in Mono-, Di-, and Triazines,
J. Am. Chem. Soc., 2012, 134, 15, 6584-6595, https://doi.org/10.1021/ja209566q
. [all data]
Gonzalez, Zhang, et al., 1988
Gonzalez, A.A.; Zhang, K.; Nolan, S.P.; Lopez de la Vega, R.; Mukerjee, S.L.; Hoff, C.D.,
Organometallics, 1988, 7, 2429. [all data]
Adedeji, Connor, et al., 1978
Adedeji, F.A.; Connor, J.A.; Demain, C.P.; Martinho Simões, J.A.; Skinner, H.A.; Zafarani- Moattar, M.T.,
J. Organometal. Chem., 1978, 149, 333. [all data]
Nolan, Hoff, et al., 1985
Nolan, S.P.; Hoff, C.D.; Landrum, J.T.,
J. Organometal. Chem., 1985, 282, 357. [all data]
Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H.,
Microsolvation of small anions by aromatic molecules: An exploratory study,
J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750
. [all data]
Mukerjee, Lang, et al., 1992
Mukerjee, S.L.; Lang, R.F.; Ju, T.; Kiss, G.; Hoff, C.D.; Nolan, S.P.,
Inorg. Chem., 1992, 31, 4885. [all data]
Partenheimer and Durham, 1974
Partenheimer, W.; Durham, B.,
J. Am. Chem. Soc., 1974, 96, 3800. [all data]
Daamen, van der Poel, et al., 1979
Daamen, H.; van der Poel, H.; Stufkens, D.J.; Oskam, A.,
Thermochim. Acta, 1979, 34, 69. [all data]
Meester, Vriends, et al., 1976
Meester, M.A.M.; Vriends, R.C.J.; Stufkens, D.J.; Vrieze, K.,
Inorg. Chim. Acta, 1976, 19, 95. [all data]
Yang, Vaida, et al., 1988
Yang, G.K.; Vaida, V.; Peters, K.S.,
Polyhedron, 1988, 7, 1619. [all data]
Zhang, Gonzalez, et al., 1991
Zhang, K.; Gonzalez, A.A.; Murkerjee, S.L.; Chou, S.-J.; Hoff, C.D.; Kubat- Martin, K.A.; Barnhart, D.; Kubas, G.J.,
J. Am. Chem. Soc., 1991, 113, 9170. [all data]
Amunugama and Rodgers, 2001
Amunugama, R.; Rodgers, M.T.,
Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory,
J. Phys. Chem. A, 2001, 105, 43, 9883, https://doi.org/10.1021/jp010663i
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Ion clustering data, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.