Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Dipotassium


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Deltafgas123.68kJ/molReviewChase, 1998Data last reviewed in December, 1983
Quantity Value Units Method Reference Comment
gas,1 bar249.71J/mol*KReviewChase, 1998Data last reviewed in December, 1983

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 1300.1300. - 6000.
A 22.6587931.01331
B 53.55520-5.786221
C -56.326681.157994
D 16.00840-0.078852
E 0.34951512.42895
F 116.1901134.1629
G 265.4874307.2290
H 123.6832123.6832
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in December, 1983 Data last reviewed in December, 1983

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

K8+ + Dipotassium = (K8+ bullet Dipotassium)

By formula: K8+ + K2 = (K8+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar84.9kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K9+ + Dipotassium = (K9+ bullet Dipotassium)

By formula: K9+ + K2 = (K9+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar53.1kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K11+ + Dipotassium = (K11+ bullet Dipotassium)

By formula: K11+ + K2 = (K11+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar65.7kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K13+ + Dipotassium = (K13+ bullet Dipotassium)

By formula: K13+ + K2 = (K13+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar68.6kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K3+ + Dipotassium = (K3+ bullet Dipotassium)

By formula: K3+ + K2 = (K3+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar66.5kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K4+ + Dipotassium = (K4+ bullet Dipotassium)

By formula: K4+ + K2 = (K4+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar57.7kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K6+ + Dipotassium = (K6+ bullet Dipotassium)

By formula: K6+ + K2 = (K6+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar79.9kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K5+ + Dipotassium = (K5+ bullet Dipotassium)

By formula: K5+ + K2 = (K5+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar76.1kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K7+ + Dipotassium = (K7+ bullet Dipotassium)

By formula: K7+ + K2 = (K7+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar90.8kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K10+ + Dipotassium = (K10+ bullet Dipotassium)

By formula: K10+ + K2 = (K10+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar59.0kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

K12+ + Dipotassium = (K12+ bullet Dipotassium)

By formula: K12+ + K2 = (K12+ bullet K2)

Quantity Value Units Method Reference Comment
Deltar68.6kJ/molPDissBrechignac, Cahuzac, et al., 1990gas phase

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through January, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 39K2
StateTeomegaeomegaexeomegaeyeBealphaegammaeDebetaereTrans.nu00
Unidentified diffuse emission bands, 17460 - 17840 cm-1.
Rebbeck and Vaughan, 1971
Diffuse bands close to lines of the principal series of K; fragments of additional systems.
Kuhn, 1932; Chakraborti, 1937; Okuda, 1936
G 28091 64.90 1 H 0.55        G larrow X R 28077 H
Yoshinaga, 1937
F 27571 62.29 1 H 0.24        F larrow X R 27556 H
Yoshinaga, 1937
StateTeomegaeomegaexeomegaeyeBealphaegammaeDebetaereTrans.nu00
E 26494.0 61.8 2 H 0.28        E larrow X R 26478.9 H
Yoshinaga, 1937; Sinha, 1950
D 24627.7 61.60 H 0.90 3 0.0010       D larrow X R 24612.3 H
Sinha, 1948
C 1Piu 22969.43 61.485 Z 0.133  0.04404 0.00011 3E-6   4.433 C larrow X R 22954.20 Z
Yamamoto, 1929; Sinha, 1948; Robertson and Barrow, 1961
B 1Piu 15376.74 75.00 0.3876 4 4.366E-3 0.048763 5 0.00024  8.25E-8  4.2125 B 6 lrarrow X 7 R 15368.20 Z
Loomis, 1931; Loomis and Nusbaum, 1932; Tango, Link, et al., 1968
StateTeomegaeomegaexeomegaeyeBealphaegammaeDebetaereTrans.nu00
A 1Sigmau+ 11681.9 69.09 H 0.153  8      A lrarrow X R 11670.5 H
Crane and Christy, 1930; Sorokin and Lankard, 1971
a 3Sigmau+Not observed; scattering calculations predict a very shallow potential minimum at ~8.7 Å.
Geittner, 1975
X 1Sigmag+ 0 92.021 Z 0.2829 9 -2.055E-3 0.056743 0.000165 10  8.63E-8  3.9051 11  
Kusch, Millman, et al., 1939; Logan, Cote, et al., 1952; Brooks, Anderson, et al., 1963

Notes

1Analysis by Yoshinaga, 1937; not confirmed by Sinha, 1950.
2Average of the constants obtained by Yoshinaga, 1937, Sinha, 1950.
3omegaeze = -0.00030; convergence at 25590.
4omegaeze = -0.0001830; vibrational constants for v'leq 25 from low-resolution magnetic rotation spectra. Higher vibrational levels converge rapidly at 17160 cm-1 above X 1Sigmag+, v=0. Te is from the analysis of high-resolution laser-induced fluorescence spectra Tango, Link, et al., 1968.
5Recalculated by Tango, Link, et al., 1968, from the data of Loomis, 1931.
6Radiative lifetime tau(v = 6,7,8) = 12.4 ns Tango and Zare, 1970; Baumgartner, Demtroder, et al., 1970 measured 9.7 ns.
7Absorption cross sections Lapp and Harris, 1966.
8A complex magnetic rotation spectrum has been observed which may be due to perturbations of A 1Sigmau+ by an unidentified 3Pi state Carroll, 1937.
9Vibrational and rotational constants from the laser-induced B geq X fluorescence spectrum Tango, Link, et al., 1968.
10alphav= -7.2E-6(v+1/2)2 + 1.5E-7(v+1/2)3. See 9.
11Mol. beam magn. reson. 14
12From the convergence limit of B 1Piu. Thermochemical value [ Lewis, 1931, recalculated Loomis and Nusbaum, 1932] 0.56 eV.
13Photoionization of K2 Foster, Leckenby, et al., 1969; in agreement with limits (3.57 leq I.P. leq 4.11 eV) obtained from chemi-ionization thresholds Lee and Mahan, 1965, Williams, 1967, Robertson and Barrow, 1961 estimate 4.09 eV.
14gJ = 0.02163 muN Brooks, Anderson, et al., 1963. For NMR spectrum and potassium eqQ see Kusch, Millman, et al., 1939, Logan, Cote, et al., 1952.
15From D00(K2) + I.P.(K) - I.P.(K2). The experimentally observed limits (photoionization of potassium vapor, are 0.74 eV leq D00 leq 1.27 eV Williams, 1967. Theoretical calculations Bellomonte, Cavaliere, et al., 1974 give l eV.
16Theoretical calculations Bellomonte, Cavaliere, et al., 1974.

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Brechignac, Cahuzac, et al., 1990
Brechignac, C.; Cahuzac, P.; Carlier, F.; De Frutos, M.; Leyniger, J., Cohesive Energies of (K)n+ 5<n<200 from Photoevaporation Experiments, J. Chem. Phys., 1990, 93, 10, 7449, https://doi.org/10.1063/1.459418 . [all data]

Rebbeck and Vaughan, 1971
Rebbeck, M.M.; Vaughan, J.M., Unidentified diffuse bands in the spectrum of potassium, J. Phys. B:, 1971, 4, 258. [all data]

Kuhn, 1932
Kuhn, H., Uber spektren von unecht gebundenen molekulen (polarisationsmolekulen) K2, Na2, Cs2 und verbreiterung von absorptionslinien, Z. Phys., 1932, 76, 782. [all data]

Chakraborti, 1937
Chakraborti, B.K., On a new type of absorption bands of potassium vapour, Indian J. Phys., 1937, 10, 155. [all data]

Okuda, 1936
Okuda, T., Narrow continuous band of potassium in the extreme red, Nature (London), 1936, 138, 168. [all data]

Yoshinaga, 1937
Yoshinaga, H., New ultraviolet absorption bands of sodium and potassium molecules, Proc. Phys. Math. Soc. Jpn., 1937, 19, 847. [all data]

Sinha, 1950
Sinha, S.P., Ultra-violet bands of K2, Proc. Phys. Soc. London Sect. A, 1950, 63, 952. [all data]

Sinha, 1948
Sinha, S.P., Blue and ultra-violet bands of K2, Proc. Phys. Soc. London, 1948, 60, 436. [all data]

Yamamoto, 1929
Yamamoto, Revised by Crane and Christy, 1930, 1929, 355. [all data]

Robertson and Barrow, 1961
Robertson, E.W.; Barrow, R.F., Rotational analysis oi the C1«pi»u-X1+g system of K2, and the ionisation potential of K2, Proc. Chem. Soc., 1961, 329. [all data]

Loomis, 1931
Loomis, F.W., Rotational structure of the red bands of potassium, Phys. Rev., 1931, 38, 2153. [all data]

Loomis and Nusbaum, 1932
Loomis, F.W.; Nusbaum, R.E., Magnetic rotation spectrum and heat of dissociation of the potassium molecule, Phys. Rev., 1932, 39, 89. [all data]

Tango, Link, et al., 1968
Tango, W.J.; Link, J.K.; Zare, R.N., Spectroscopy of K2 using laser-induced fluorescence, J. Chem. Phys., 1968, 49, 4264. [all data]

Crane and Christy, 1930
Crane, W.O.; Christy, A., Vibrational quantum analysis of the potassium infrared absorption bands, Phys. Rev., 1930, 36, 421. [all data]

Sorokin and Lankard, 1971
Sorokin, P.P.; Lankard, J.R., Emission spectra of alkali-metal molecules observed with a heat-pipe discharge tube, J. Chem. Phys., 1971, 55, 3810. [all data]

Geittner, 1975
Geittner, P., Bestimmung der Triplett-Potentialdaten fur das K2-Stossmolekul, Z. Phys., 1975, 272, 359. [all data]

Kusch, Millman, et al., 1939
Kusch, P.; Millman, S.; Rabi, I.I., The nuclear magnetic moments of N14, Na23, K39 and Cs133, Phys. Rev., 1939, 55, 1176. [all data]

Logan, Cote, et al., 1952
Logan, R.A.; Cote, R.E.; Kusch, P., The sign of the quadrupole interaction energy in diatomic molecules, Phys. Rev., 1952, 86, 280. [all data]

Brooks, Anderson, et al., 1963
Brooks, R.A.; Anderson, C.H.; Ramsey, N.F., Rotational magnetic moments of diatomic alkalis, Phys. Rev. Lett., 1963, 10, 441. [all data]

Tango and Zare, 1970
Tango, W.J.; Zare, R.N., Radiative lifetime of the B1«PI»u state of K2, J. Chem. Phys., 1970, 53, 3094. [all data]

Baumgartner, Demtroder, et al., 1970
Baumgartner, G.; Demtroder, W.; Stock, M., Lifetime-measurements of alkali-molecules excited by different laserlines, Z. Phys., 1970, 232, 462. [all data]

Lapp and Harris, 1966
Lapp, M.; Harris, L.P., Absorption cross sections of alkali-vapor molecules: I. Cs2 in the visible. II. K2 in the red, J. Quant. Spectrosc. Radiat. Transfer, 1966, 6, 169. [all data]

Carroll, 1937
Carroll, T., Magnetic rotation spectra of diatomic molecules, Phys. Rev., 1937, 52, 822. [all data]

Lewis, 1931
Lewis, L.C., Die bestimmung des gleichgewichts zwischen den atomen und den molekulen eines alkalidampfes mit einer molekularstrahlmethode, Z. Phys., 1931, 69, 786. [all data]

Foster, Leckenby, et al., 1969
Foster, P.J.; Leckenby, R.E.; Robbins, E.J., The ionization potentials of clustered alkali metal atoms, J. Phys. B:, 1969, 2, 478. [all data]

Lee and Mahan, 1965
Lee, Y.-T.; Mahan, B.H., Photosensitized ionization of alkali-metal vapors, J. Chem. Phys., 1965, 42, 2893. [all data]

Williams, 1967
Williams, R.A., Photoionization of potassium vapor, J. Chem. Phys., 1967, 47, 4281. [all data]

Bellomonte, Cavaliere, et al., 1974
Bellomonte, L.; Cavaliere, P.; Ferrante, G., Alkali molecular ion energies and expectation values in a model-potential treatment, J. Chem. Phys., 1974, 61, 3225. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, References