Fluoranthene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas291.4 ± 4.0kJ/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfgas289.8kJ/molN/AWestrum and Wong, 1967Value computed using ΔfHsolid° value of 189.8±0.4 kj/mol from Westrum and Wong, 1967 and ΔsubH° value of 100.0 kj/mol from Boyd, Christensen, et al., 1965.; DRB
Δfgas292.0 ± 2.2kJ/molCcbBoyd, Christensen, et al., 1965Reanalyzed by Cox and Pilcher, 1970, Original value = 295. ± 7.5 kJ/mol; ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
42.0050.Dorofeeva O.V., 1989These values are based on the experimental assignment of vibrational spectra. The S(300 K) and Cp(300 K) values calculated by MM3 method [ Pope C.J., 1995] are 10 and 4 J/mol*K, respectively, larger than selected ones. Recommended values are also reproduced in the reference book [ Frenkel M., 1994].; GT
65.72100.
95.81150.
130.42200.
184.90273.15
203.6 ± 2.0298.15
204.95300.
274.78400.
332.96500.
379.38600.
416.36700.
446.20800.
470.63900.
490.881000.
507.821100.
522.121200.
534.261300.
544.631400.
553.541500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfsolid190.2 ± 2.8kJ/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfsolid189.8 ± 0.4kJ/molCcrWestrum and Wong, 1967ALS
Δfsolid192. ± 5.4kJ/molCcbBoyd, Christensen, et al., 1965ALS
Quantity Value Units Method Reference Comment
Δcsolid-7915.2 ± 0.4kJ/molCcrWestrum and Wong, 1967Corresponding Δfsolid = 189.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-7917.8 ± 5.4kJ/molCcbBoyd, Christensen, et al., 1965Corresponding Δfsolid = 192. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar230.58J/mol*KN/AWong and Westrum, 1971DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
230.25298.15Wong and Westrum, 1971T = 5 to 427 K.; DH

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Westrum and Wong, 1967
Westrum, E.F., Jr.; Wong, S., Strain energies and thermal properties of globular and polynuclear aromatic molecules, AEC Rept. Coo-1149-92, Contract AT(11-1)-1149, 1967, 1-7. [all data]

Boyd, Christensen, et al., 1965
Boyd, R.H.; Christensen, R.L.; Pua, R., The heats of combustion of acenaphthene, acenaphthylene, and fluoranthene. Strain and delocalization in bridged naphthalenes, J. Am. Chem. Soc., 1965, 87, 3554-3559. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Dorofeeva O.V., 1989
Dorofeeva O.V., Thermodynamic Properties of Gaseous Polycyclic Aromatic Hydrocarbons Containing Five-Membered Rings. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-263 (in Russian), Moscow, 1989. [all data]

Pope C.J., 1995
Pope C.J., Thermochemical properties of curved PAH and fullerenes: a group additivity method compared with MM3(92) and MOPAC predictions, J. Phys. Chem., 1995, 99, 4306-4316. [all data]

Frenkel M., 1994
Frenkel M., Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]

Wong and Westrum, 1971
Wong, W-K.; Westrum, E.F., Jr., Thermodynamics of polynuclear aromatic molecules. I. Heat capacities and enthalpies of fusion of pyrene, flouranthene, and triphenylene, J. Chem. Thermodynam., 1971, 3, 105-124. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References