Lithium ion (1+)


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 51 to 100

(Lithium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Lithium ion (1+) • 3Carbon monoxide)

By formula: (Li+ • 2CO) + CO = (Li+ • 3CO)

Quantity Value Units Method Reference Comment
Δr35. ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr35. ± 4.2kJ/molCIDTWalter, Sievers, et al., 1998RCD

(Lithium ion (1+) • Carbon monoxide) + Carbon monoxide = (Lithium ion (1+) • 2Carbon monoxide)

By formula: (Li+ • CO) + CO = (Li+ • 2CO)

Quantity Value Units Method Reference Comment
Δr36. ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr36. ± 4.2kJ/molCIDTWalter, Sievers, et al., 1998RCD

Lithium ion (1+) + Carbon monoxide = (Lithium ion (1+) • Carbon monoxide)

By formula: Li+ + CO = (Li+ • CO)

Quantity Value Units Method Reference Comment
Δr55. ± 13.kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr55. ± 12.kJ/molCIDTWalter, Sievers, et al., 1998RCD

(Lithium ion (1+) • Nitrogen) + Nitrogen = (Lithium ion (1+) • 2Nitrogen)

By formula: (Li+ • N2) + N2 = (Li+ • 2N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
18.318.DTGatland, Colonna-Romano, et al., 1975gas phase; low E/N; M

Lithium ion (1+) + Nitrogen = (Lithium ion (1+) • Nitrogen)

By formula: Li+ + N2 = (Li+ • N2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.318.DTGatland, Colonna-Romano, et al., 1975gas phase; low E/N; M

Lithium ion (1+) + Oxygen = (Lithium ion (1+) • Oxygen)

By formula: Li+ + O2 = (Li+ • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
18.319.DTColonna-Romano and Keller, 1976gas phase; low E/N; M

(Lithium ion (1+) • Toluene) + Toluene = (Lithium ion (1+) • 2Toluene)

By formula: (Li+ • C7H8) + C7H8 = (Li+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr116. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Lithium ion (1+) • Phenol) + Phenol = (Lithium ion (1+) • 2Phenol)

By formula: (Li+ • C6H6O) + C6H6O = (Li+ • 2C6H6O)

Quantity Value Units Method Reference Comment
Δr115. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002, 2RCD

(Lithium ion (1+) • Benzene, fluoro-) + Benzene, fluoro- = (Lithium ion (1+) • 2Benzene, fluoro-)

By formula: (Li+ • C6H5F) + C6H5F = (Li+ • 2C6H5F)

Quantity Value Units Method Reference Comment
Δr95. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002, 3RCD

(Lithium ion (1+) • Anisole) + Anisole = (Lithium ion (1+) • 2Anisole)

By formula: (Li+ • C7H8O) + C7H8O = (Li+ • 2C7H8O)

Quantity Value Units Method Reference Comment
Δr121. ± 4.kJ/molCIDTAmunugama and Rodgers, 2003RCD

(Lithium ion (1+) • Ethane, 1,2-dimethoxy-) + Ethane, 1,2-dimethoxy- = (Lithium ion (1+) • 2Ethane, 1,2-dimethoxy-)

By formula: (Li+ • C4H10O2) + C4H10O2 = (Li+ • 2C4H10O2)

Quantity Value Units Method Reference Comment
Δr139. ± 12.kJ/molCIDTRodgers and Armentrout, 2000RCD

(Lithium ion (1+) • Benzene) + Benzene = (Lithium ion (1+) • 2Benzene)

By formula: (Li+ • C6H6) + C6H6 = (Li+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr104. ± 7.1kJ/molCIDTAmicangelo and Armentrout, 2000RCD

Lithium ion (1+) + 2H-Tetrazole = (Lithium ion (1+) • 2H-Tetrazole)

By formula: Li+ + CH2N4 = (Li+ • CH2N4)

Quantity Value Units Method Reference Comment
Δr151. ± 7.1kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Hydrogen = (Lithium ion (1+) • Hydrogen)

By formula: Li+ + H2 = (Li+ • H2)

Quantity Value Units Method Reference Comment
Δr27. ± 19.kJ/molEIWu, 1979gas phase; M

Lithium ion (1+) + Acetamide, N-methyl- = (Lithium ion (1+) • Acetamide, N-methyl-)

By formula: Li+ + C3H7NO = (Li+ • C3H7NO)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
173.373.CIDT,ICRHerreros, Gal, et al., 1999RCD

Lithium ion (1+) + Toluene = (Lithium ion (1+) • Toluene)

By formula: Li+ + C7H8 = (Li+ • C7H8)

Quantity Value Units Method Reference Comment
Δr183. ± 17.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Lithium ion (1+) + Phenol = (Lithium ion (1+) • Phenol)

By formula: Li+ + C6H6O = (Li+ • C6H6O)

Quantity Value Units Method Reference Comment
Δr178. ± 17.kJ/molCIDTAmunugama and Rodgers, 2002, 2RCD

Lithium ion (1+) + Pyrrole = (Lithium ion (1+) • Pyrrole)

By formula: Li+ + C4H5N = (Li+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr177. ± 17.kJ/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + Formamide, N-methyl- = (Lithium ion (1+) • Formamide, N-methyl-)

By formula: Li+ + C2H5NO = (Li+ • C2H5NO)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
166.373.CIDCHerreros, Gal, et al., 1999RCD

Lithium ion (1+) + 1H-Pyrazole = (Lithium ion (1+) • 1H-Pyrazole)

By formula: Li+ + C3H4N2 = (Li+ • C3H4N2)

Quantity Value Units Method Reference Comment
Δr187. ± 17.kJ/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + 1H-Imidazole = (Lithium ion (1+) • 1H-Imidazole)

By formula: Li+ + C3H4N2 = (Li+ • C3H4N2)

Quantity Value Units Method Reference Comment
Δr211. ± 9.6kJ/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + Benzene, fluoro- = (Lithium ion (1+) • Benzene, fluoro-)

By formula: Li+ + C6H5F = (Li+ • C6H5F)

Quantity Value Units Method Reference Comment
Δr147. ± 21.kJ/molCIDTAmunugama and Rodgers, 2002, 3RCD

Lithium ion (1+) + 1H-Imidazole, 1-methyl- = (Lithium ion (1+) • 1H-Imidazole, 1-methyl-)

By formula: Li+ + C4H6N2 = (Li+ • C4H6N2)

Quantity Value Units Method Reference Comment
Δr242. ± 21.kJ/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + 1H-Pyrazole, 1-methyl- = (Lithium ion (1+) • 1H-Pyrazole, 1-methyl-)

By formula: Li+ + C4H6N2 = (Li+ • C4H6N2)

Quantity Value Units Method Reference Comment
Δr207. ± 19.kJ/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + Anisole = (Lithium ion (1+) • Anisole)

By formula: Li+ + C7H8O = (Li+ • C7H8O)

Quantity Value Units Method Reference Comment
Δr185. ± 19.kJ/molCIDTAmunugama and Rodgers, 2003RCD

Lithium ion (1+) + Ethane, 1,2-dimethoxy- = (Lithium ion (1+) • Ethane, 1,2-dimethoxy-)

By formula: Li+ + C4H10O2 = (Li+ • C4H10O2)

Quantity Value Units Method Reference Comment
Δr158. ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + C2H3N3 = (Lithium ion (1+) • C2H3N3)

By formula: Li+ + C2H3N3 = (Li+ • C2H3N3)

Quantity Value Units Method Reference Comment
Δr136. ± 7.1kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 1H-1,2,4-Triazole = (Lithium ion (1+) • 1H-1,2,4-Triazole)

By formula: Li+ + C2H3N3 = (Li+ • C2H3N3)

Quantity Value Units Method Reference Comment
Δr191. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Pyrazine = (Lithium ion (1+) • Pyrazine)

By formula: Li+ + C4H4N2 = (Li+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr149. ± 14.kJ/molCIDTAmunugama and Rodgers, 2000RCD

Lithium ion (1+) + 1,3,5-Triazine = (Lithium ion (1+) • 1,3,5-Triazine)

By formula: Li+ + C3H3N3 = (Li+ • C3H3N3)

Quantity Value Units Method Reference Comment
Δr127. ± 13.kJ/molCIDTAmunugama and Rodgers, 2000RCD

Lithium ion (1+) + 12-Crown-4 = (Lithium ion (1+) • 12-Crown-4)

By formula: Li+ + C8H16O4 = (Li+ • C8H16O4)

Quantity Value Units Method Reference Comment
Δr252. ± 13.kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Formamide = (Lithium ion (1+) • Formamide)

By formula: Li+ + CH3NO = (Li+ • CH3NO)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
157.373.CIDCHerreros, Gal, et al., 1999RCD

Lithium ion (1+) + 1H-Pyrrole, 1-methyl- = (Lithium ion (1+) • 1H-Pyrrole, 1-methyl-)

By formula: Li+ + C5H7N = (Li+ • C5H7N)

Quantity Value Units Method Reference Comment
Δr186. ± 17.kJ/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + C7H8O3S = (Lithium ion (1+) • C7H8O3S)

By formula: Li+ + C7H8O3S = (Li+ • C7H8O3S)

Quantity Value Units Method Reference Comment
Δr206.kJ/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Ethanol = (Lithium ion (1+) • Ethanol)

By formula: Li+ + C2H6O = (Li+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr164. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Isopropyl Alcohol = (Lithium ion (1+) • Isopropyl Alcohol)

By formula: Li+ + C3H8O = (Li+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr173. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 1-Propanol = (Lithium ion (1+) • 1-Propanol)

By formula: Li+ + C3H8O = (Li+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr171. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 1-Butanol = (Lithium ion (1+) • 1-Butanol)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr178. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 2-Propanol, 2-methyl- = (Lithium ion (1+) • 2-Propanol, 2-methyl-)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr178. ± 10.kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 1-Propanol, 2-methyl- = (Lithium ion (1+) • 1-Propanol, 2-methyl-)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr169. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 2-Butanol = (Lithium ion (1+) • 2-Butanol)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr174. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Pyridine, 4-methyl- = (Lithium ion (1+) • Pyridine, 4-methyl-)

By formula: Li+ + C6H7N = (Li+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr196. ± 14.kJ/molCIDTRodgers, 2001RCD

Lithium ion (1+) + Pyridine, 3-methyl- = (Lithium ion (1+) • Pyridine, 3-methyl-)

By formula: Li+ + C6H7N = (Li+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr197. ± 15.kJ/molCIDTRodgers, 2001RCD

Lithium ion (1+) + Pyridine, 2-methyl- = (Lithium ion (1+) • Pyridine, 2-methyl-)

By formula: Li+ + C6H7N = (Li+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr194. ± 6.7kJ/molCIDTRodgers, 2001RCD

Lithium ion (1+) + 3-Aminopyridine = (Lithium ion (1+) • 3-Aminopyridine)

By formula: Li+ + C5H6N2 = (Li+ • C5H6N2)

Quantity Value Units Method Reference Comment
Δr202. ± 10.kJ/molCIDTRodgers, 2001, 2RCD

Lithium ion (1+) + 4-Aminopyridine = (Lithium ion (1+) • 4-Aminopyridine)

By formula: Li+ + C5H6N2 = (Li+ • C5H6N2)

Quantity Value Units Method Reference Comment
Δr217. ± 21.kJ/molCIDTRodgers, 2001, 2RCD

Lithium ion (1+) + 2-Aminopyridine = (Lithium ion (1+) • 2-Aminopyridine)

By formula: Li+ + C5H6N2 = (Li+ • C5H6N2)

Quantity Value Units Method Reference Comment
Δr238. ± 21.kJ/molCIDTRodgers, 2001, 2RCD

Lithium ion (1+) + Benzene, (methylsulfinyl)- = (Lithium ion (1+) • Benzene, (methylsulfinyl)-)

By formula: Li+ + C7H8OS = (Li+ • C7H8OS)

Quantity Value Units Method Reference Comment
Δr230.kJ/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Methyl 4-nitrophenyl sulfone = (Lithium ion (1+) • Methyl 4-nitrophenyl sulfone)

By formula: Li+ + C7H8NO4S = (Li+ • C7H8NO4S)

Quantity Value Units Method Reference Comment
Δr198.kJ/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Sulfone, methyl phenyl = (Lithium ion (1+) • Sulfone, methyl phenyl)

By formula: Li+ + C7H8O2S = (Li+ • C7H8O2S)

Quantity Value Units Method Reference Comment
Δr213.kJ/molCIDCBuncel, Decouzon, et al., 1997RCD

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Walter, Sievers, et al., 1998
Walter, D.; Sievers, M.R.; Armentrout, P.B., Alkali Ion Carbonyls: Sequential Bond Energies of Li+(CO)x (x=1-3), Na+(CO)x (x=1, 2), and K+(CO), Int. J. Mass Spectrom., 1998, 175, 1-2, 93, https://doi.org/10.1016/S0168-1176(98)00109-8 . [all data]

Gatland, Colonna-Romano, et al., 1975
Gatland, I.R.; Colonna-Romano, L.M.; Keller, G.E., Single and Double Clustering of Nitrogen to Li+, Phys. Rev. A, 1975, 12, 5, 1885, https://doi.org/10.1103/PhysRevA.12.1885 . [all data]

Colonna-Romano and Keller, 1976
Colonna-Romano, L.M.; Keller, G.E., The Clustering of O2 and He to Li+, J. Chem. Phys., 1976, 64, 6, 2684, https://doi.org/10.1063/1.432522 . [all data]

Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions. 1. Absolute binding energies of alkali metal cation-toluene complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 22, 5529, https://doi.org/10.1021/jp014307b . [all data]

Amunugama and Rodgers, 2002, 2
Amunugama, R.; Rodgers, M.T., The influence of substituents on cation-pi interactions. 4. Absolute binding energies of alkali metal cation - Phenol complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 42, 9718, https://doi.org/10.1021/jp0211584 . [all data]

Amunugama and Rodgers, 2002, 3
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions. 2. Absolute binding energies of alkali metal cation-fluorobenzene complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 39, 9092, https://doi.org/10.1021/jp020459a . [all data]

Amunugama and Rodgers, 2003
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions - 5. Absolute binding energies of alkali metal cation-anisole complexes determined by threshold collision-induced dissociation and theoretical studies, Int. J. Mass Spectrom., 2003, 222, 1-3, 431, https://doi.org/10.1016/S1387-3806(02)00945-4 . [all data]

Amicangelo and Armentrout, 2000
Amicangelo, J.C.; Armentrout, P.B., Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, J. Phys. Chem. A, 2000, 104, 48, 11420, https://doi.org/10.1021/jp002652f . [all data]

Wu, 1979
Wu, C.H., Binding Energies of LiH2 and LiH2+ and the Ionization Potential of LiH2, J. Chem. Phys., 1979, 71, 2, 783, https://doi.org/10.1063/1.438367 . [all data]

Herreros, Gal, et al., 1999
Herreros, M.; Gal, J.-F.; Maria, P.-C.; Decouzon, M., Gas-Phase Basicity of Simple Amides Toward Proton and Lithium Cation: An Experimental and Theoretical Study, Eur. J. Mass Spectrom., 1999, 5, 1, 259, https://doi.org/10.1255/ejms.282 . [all data]

Huang and Rodgers, 2002
Huang, H.; Rodgers, M.T., Sigma versus Pi interactions in alkali metal ion binding to azoles: Threshold collision-induced dissociation and ab initio theory studies, J. Phys. Chem. A, 2002, 106, 16, 4277, https://doi.org/10.1021/jp013630b . [all data]

Amunugama and Rodgers, 2000
Amunugama, R.; Rodgers, M.T., Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation and Ab Initio Theory, Int. J. Mass Spectrom., 2000, 195/196, 439, https://doi.org/10.1016/S1387-3806(99)00145-1 . [all data]

Buncel, Decouzon, et al., 1997
Buncel, E.; Decouzon, M.; Formento, A.; Gal, J.-F.; Herreros, M.; Li, L.; Maria, P.-C., Lithium-Cation and Proton Affinities of Sulfoxides and Sulfones: A Fourier Transform Ion Cyclotron Resonance Study, J. Am. Soc. Mass Spectrom., 1997, 8, 3, 262, https://doi.org/10.1016/S1044-0305(96)00255-3 . [all data]

Rodgers, 2001
Rodgers, M.T., Substituent Effects in the Binding of Alkali Metal Ions to Pyridines, Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Methylpyridines, J. Phys. Chem. A, 2001, 105, 11, 2374, https://doi.org/10.1021/jp004055z . [all data]

Rodgers, 2001, 2
Rodgers, M.T., Substituent Effects in the Binding of Alkali Metal Ions to Pyridines, Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Aminopyridines, J. Phys. Chem. A, 2001, 105, 35, 8145, https://doi.org/10.1021/jp011555z . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References