Cobalt, tetracarbonylhydro-


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Quantity Value Units Method Reference Comment
Δfgas-136.0 ± 0.53kcal/molReviewMartinho Simões 

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Dicobalt octacarbonyl (solution) + Hydrogen (solution) = 2Cobalt, tetracarbonylhydro- (solution)

By formula: C8Co2O8 (solution) + H2 (solution) = 2C4HCoO4 (solution)

Quantity Value Units Method Reference Comment
Δr4.7 ± 0.2kcal/molEqSRathke, Klingler, et al., 1992solvent: Supercritical carbon dioxide; Temperature range: 333-453 K. The results corrected for 1 atm pressure of H2 are 3.99 kcal/mol and -17.6 J/(mol K) Rathke, Klingler, et al., 1992
Δr3.1 ± 0.2kcal/molEqSBor, 1986solvent: n-Hexane; Temperature range: ca. 300-420 K
Δr6.31kcal/molKinSAlemdaroglu, Penninger, et al., 1976solvent: n-Heptane; The reaction enthalpy relies on the experimental values for the forward and reverse activation enthalpies, 72.4 and 11.0 kcal/mol, respectively Alemdaroglu, Penninger, et al., 1976. A rather different value has, however, been reported for the activation enthalpy of the forward reaction, 25.00 kcal/mol Ungváry, 1972
Δr6.60kcal/molEqSAlemdaroglu, Penninger, et al., 1976solvent: n-Heptane; Temperature range: 353-428 K
Δr3.20kcal/molEqSUngváry, 1972solvent: n-Heptane; Temperature range: 307-428 K. The results corrected for 1 atm pressure of H2 are 4.30 kcal/mol and -10.9 J/(mol K) Rathke, Klingler, et al., 1992

Cobalt, tetracarbonylhydro- (solution) = Hydrogen atom (solution) + Cobalt, tetracarbonyl (solution)

By formula: C4HCoO4 (solution) = H (solution) + C4CoO4 (solution)

Quantity Value Units Method Reference Comment
Δr66.4 ± 1.0kcal/molEChemParker, Handoo, et al., 1991solvent: Acetonitrile; Please also see Tilset and Parker, 1989. The reaction enthalpy was obtained from the pKa of the hydride complex (MH), 8.3, and from the oxidation potential of the anion (M-), Co(CO)4(-), by using the equation: ΔHrxn [kJ/mol] = 5.71pKa(MH) + 96.485(Eo)ox(M-) + C. C is a constant that was calculated as 59.49 kcal/mol Parker, Handoo, et al., 1991, by adjusting the previous equation to the calorimetrically derived values for the reactions Cr(Cp)(CO)3(H)(solution) = Cr(Cp)(CO)3(solution) + H(solution), 61.5 ± 1.0 kcal/mol, and Cr(Cp)(CO)2(PPh3)(H)(solution) = Cr(Cp)(CO)2(PPh3)(solution) + H(solution), 59.8 ± 1.0 kcal/mol Kiss, Zhang, et al., 1990. C depends on the solvent and on the reference electrode. The value given implies that the electrode potentials are referenced to ferrocene/ferricinium electrode

Cobalt, tetracarbonylhydro- (g) = 0.5Hydrogen (g) + 4Carbon monoxide (g) + cobalt (cr)

By formula: C4HCoO4 (g) = 0.5H2 (g) + 4CO (g) + Co (cr)

Quantity Value Units Method Reference Comment
Δr30.38 ± 0.50kcal/molEqGBronshstein, Gankin, et al., 1966Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970. Temperature range: ca. 423-533 K

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Martinho Simões
Martinho Simões, J.A., Private communication (see http://webbook.nist.gov/chemistry/om/). [all data]

Rathke, Klingler, et al., 1992
Rathke, J.W.; Klingler, R.J.; Krause, T.R., Organometallics, 1992, 11, 585. [all data]

Bor, 1986
Bor, G., Pure & Appl. Chem., 1986, 58, 543. [all data]

Alemdaroglu, Penninger, et al., 1976
Alemdaroglu, N.H.; Penninger, J.M.L.; Oltay, E., Monatsh. Chem., 1976, 107, 1043. [all data]

Ungváry, 1972
Ungváry, F., J. Organometal. Chem., 1972, 36, 363. [all data]

Parker, Handoo, et al., 1991
Parker, V.D.; Handoo, K.L.; Roness, F.; Tilset, M., J. Am. Chem. Soc., 1991, 113, 7493. [all data]

Tilset and Parker, 1989
Tilset, M.; Parker, V.D., J. Am. Chem. Soc., 1989, 111, 6711; ibid. 1990. [all data]

Kiss, Zhang, et al., 1990
Kiss, G.; Zhang, K.; Mukerjee, S.L.; Hoff, C.; Roper, G.C., J. Am. Chem. Soc., 1990, 112, 5657. [all data]

Bronshstein, Gankin, et al., 1966
Bronshstein, Yu.E.; Gankin, V.Yu.; Krinkin, D.P.; Rudkovskii, D.M., Russ. J. Phys. Chem., 1966, 40, 802. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References