Nitric oxide anion


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Nitric oxide anion + Nitrogen = (Nitric oxide anion • Nitrogen)

By formula: NO- + N2 = (NO- • N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr20.kJ/molDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr18.kJ/molHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr22.kJ/molHPMSTurner and Conway, 1976gas phase; M
Δr19.kJ/molDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr57.7J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr55.6J/mol*KHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr79.1J/mol*KHPMSTurner and Conway, 1976gas phase; M
Δr65.7J/mol*KDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; M

Nitric oxide anion + Nitrous oxide = (Nitric oxide anion • Nitrous oxide)

By formula: NO- + N2O = (NO- • N2O)

Quantity Value Units Method Reference Comment
Δr60. ± 100.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr75.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr62.3J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=32.2 kJ/mol; M

Nitric oxide anion + Water = (Nitric oxide anion • Water)

By formula: NO- + H2O = (NO- • H2O)

Quantity Value Units Method Reference Comment
Δr77.4kJ/molPHPMSFrench, Hills, et al., 1973gas phase; M
Δr69.5kJ/molPESEaton, Arnold, et al., 1990gas phase; M
Δr95.0kJ/molMSBurdett and Hayhurst, 1982gas phase; flame source, about 1600 K; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KPHPMSFrench, Hills, et al., 1973gas phase; M
Δr100.J/mol*KMSBurdett and Hayhurst, 1982gas phase; flame source, about 1600 K; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
53.1296.SAMSPuckett and Teague, 1971gas phase; switching reaction(NO+)NO; M

(Nitric oxide anion • Water) + Water = (Nitric oxide anion • 2Water)

By formula: (NO- • H2O) + H2O = (NO- • 2H2O)

Quantity Value Units Method Reference Comment
Δr65.69kJ/molN/AEaton, Arnold, et al., 1990gas phase; Vertical Detachment Energy: 1.860±0.020 eV; B,M
Δr67.4kJ/molPHPMSFrench, Hills, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KPHPMSFrench, Hills, et al., 1973gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
35.293.HPMSMcAdams and Bone, 1972gas phase; M
36.296.FAHoward, Rundle, et al., 1971gas phase; M
36.296.SAMSPuckett and Teague, 1971gas phase; M

Nitric oxide anion + Carbon dioxide = (Nitric oxide anion • Carbon dioxide)

By formula: NO- + CO2 = (NO- • CO2)

Quantity Value Units Method Reference Comment
Δr36. ± 1.kJ/molDTIllies, 1988gas phase; ΔrH(0 K)=36.0 kJ/mol; M
Δr32. ± 2.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr57.7kJ/molFADunkin, Fehsenfeld, et al., 1971gas phase; switching reaction(NO+)NO, ΔrH<; M
Quantity Value Units Method Reference Comment
Δr75.3J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=36.0 kJ/mol; M
Δr57.3J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 2Nitrous oxide)

By formula: (NO- • N2O) + N2O = (NO- • 2N2O)

Quantity Value Units Method Reference Comment
Δr24.7 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr19.2kJ/molN/ACoe, Snodgrass, et al., 1987gas phase; B
Δr23.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr30.kJ/molPESCoe, Snodgrass, et al., 1986gas phase; D(N2O)2 not accounted for; M
Quantity Value Units Method Reference Comment
Δr-4.2 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 2Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 3Nitrous oxide)

By formula: (NO- • 2N2O) + N2O = (NO- • 3N2O)

Quantity Value Units Method Reference Comment
Δr21.8 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr21.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr88.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-5.0 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 2Water) + Water = (Nitric oxide anion • 3Water)

By formula: (NO- • 2H2O) + H2O = (NO- • 3H2O)

Quantity Value Units Method Reference Comment
Δr74.5kJ/molPESEaton, Arnold, et al., 1990gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.308.PHPMSFrench, Hills, et al., 1973gas phase; M
25.293.HPMSMcAdams and Bone, 1972gas phase; M
25.296.FAHoward, Rundle, et al., 1971gas phase; M
25.296.SAMSPuckett and Teague, 1971gas phase; M

(Nitric oxide anion • Nitrogen) + Nitrogen = (Nitric oxide anion • 2Nitrogen)

By formula: (NO- • N2) + N2 = (NO- • 2N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr16.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr52.7J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Nitric oxide anion • 3Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 4Nitrous oxide)

By formula: (NO- • 3N2O) + N2O = (NO- • 4N2O)

Quantity Value Units Method Reference Comment
Δr20.9 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr19.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-5.0 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 4Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 5Nitrous oxide)

By formula: (NO- • 4N2O) + N2O = (NO- • 5N2O)

Quantity Value Units Method Reference Comment
Δr17.6 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr19.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-6.3 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 2Nitrogen) + Nitrogen = (Nitric oxide anion • 3Nitrogen)

By formula: (NO- • 2N2) + N2 = (NO- • 3N2)

Quantity Value Units Method Reference Comment
Δr16. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr70.3J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Nitric oxide anion • 3Nitrogen) + Nitrogen = (Nitric oxide anion • 4Nitrogen)

By formula: (NO- • 3N2) + N2 = (NO- • 4N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Nitric oxide anion • 9Nitrogen) + Nitrogen = (Nitric oxide anion • 10Nitrogen)

By formula: (NO- • 9N2) + N2 = (NO- • 10N2)

Quantity Value Units Method Reference Comment
Δr7.03kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr79.J/mol*KN/AHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M

(Nitric oxide anion • 5Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 6Carbon dioxide)

By formula: (NO- • 5CO2) + CO2 = (NO- • 6CO2)

Quantity Value Units Method Reference Comment
Δr21.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AHiraoka and Yamabe, 1991gas phase; Entropy change calculated or estimated; M

Nitric oxide anion + Oxygen = (Nitric oxide anion • Oxygen)

By formula: NO- + O2 = (NO- • O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr60.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
-2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; DG>; M

Nitric oxide anion + Hydrogen cation = Nitrosyl hydride

By formula: NO- + H+ = HNO

Quantity Value Units Method Reference Comment
Δr1511.6 ± 0.63kJ/molD-EATravers, Cowles, et al., 1989gas phase; ground state triplet anion; B
Quantity Value Units Method Reference Comment
Δr1484.0 ± 1.4kJ/molH-TSTravers, Cowles, et al., 1989gas phase; ground state triplet anion; B

Nitric oxide anion + Propanal = (Nitric oxide anion • Propanal)

By formula: NO- + C3H6O = (NO- • C3H6O)

Quantity Value Units Method Reference Comment
Δr159.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978, ref. to PA(NH3)=872. kJ/mol; M

Nitric oxide anion + Nitric oxide = (Nitric oxide anion • Nitric oxide)

By formula: NO- + NO = (NO- • NO)

Quantity Value Units Method Reference Comment
Δr57.7kJ/molPILinn, Ono, et al., 1981gas phase; M
Δr56.9kJ/molPINg, Tiedemann, et al., 1977gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
29.296.SAMSPuckett and Teague, 1971gas phase; M

(Nitric oxide anion • 5Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 6Nitrous oxide)

By formula: (NO- • 5N2O) + N2O = (NO- • 6N2O)

Quantity Value Units Method Reference Comment
Δr18.4 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M,M
Quantity Value Units Method Reference Comment
Δr-7.9 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 6Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 7Nitrous oxide)

By formula: (NO- • 6N2O) + N2O = (NO- • 7N2O)

Quantity Value Units Method Reference Comment
Δr17.6 ± 1.3kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M,M
Quantity Value Units Method Reference Comment
Δr-11. ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

Nitric oxide anion + Ethylbenzene = (Nitric oxide anion • Ethylbenzene)

By formula: NO- + C8H10 = (NO- • C8H10)

Quantity Value Units Method Reference Comment
Δr186.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzonitrile = (Nitric oxide anion • Benzonitrile)

By formula: NO- + C7H5N = (NO- • C7H5N)

Quantity Value Units Method Reference Comment
Δr172.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzaldehyde = (Nitric oxide anion • Benzaldehyde)

By formula: NO- + C7H6O = (NO- • C7H6O)

Quantity Value Units Method Reference Comment
Δr183.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, propyl- = (Nitric oxide anion • Benzene, propyl-)

By formula: NO- + C9H12 = (NO- • C9H12)

Quantity Value Units Method Reference Comment
Δr189.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Toluene = (Nitric oxide anion • Toluene)

By formula: NO- + C7H8 = (NO- • C7H8)

Quantity Value Units Method Reference Comment
Δr185.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, chloro- = (Nitric oxide anion • Benzene, chloro-)

By formula: NO- + C6H5Cl = (NO- • C6H5Cl)

Quantity Value Units Method Reference Comment
Δr161.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + n-Propyl acetate = (Nitric oxide anion • n-Propyl acetate)

By formula: NO- + C5H10O2 = (NO- • C5H10O2)

Quantity Value Units Method Reference Comment
Δr176.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Butanal = (Nitric oxide anion • Butanal)

By formula: NO- + C4H8O = (NO- • C4H8O)

Quantity Value Units Method Reference Comment
Δr164.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Ethyl Acetate = (Nitric oxide anion • Ethyl Acetate)

By formula: NO- + C4H8O2 = (NO- • C4H8O2)

Quantity Value Units Method Reference Comment
Δr174.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, fluoro- = (Nitric oxide anion • Benzene, fluoro-)

By formula: NO- + C6H5F = (NO- • C6H5F)

Quantity Value Units Method Reference Comment
Δr158.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + 3-Pentanone, 2,4-dimethyl- = (Nitric oxide anion • 3-Pentanone, 2,4-dimethyl-)

By formula: NO- + C7H14O = (NO- • C7H14O)

Quantity Value Units Method Reference Comment
Δr187.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Ethyl ether = (Nitric oxide anion • Ethyl ether)

By formula: NO- + C4H10O = (NO- • C4H10O)

Quantity Value Units Method Reference Comment
Δr173.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Acetone = (Nitric oxide anion • Acetone)

By formula: NO- + C3H6O = (NO- • C3H6O)

Quantity Value Units Method Reference Comment
Δr172.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene = (Nitric oxide anion • Benzene)

By formula: NO- + C6H6 = (NO- • C6H6)

Quantity Value Units Method Reference Comment
Δr172.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Acetaldehyde = (Nitric oxide anion • Acetaldehyde)

By formula: NO- + C2H4O = (NO- • C2H4O)

Quantity Value Units Method Reference Comment
Δr164.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + 2-Butanone = (Nitric oxide anion • 2-Butanone)

By formula: NO- + C4H8O = (NO- • C4H8O)

Quantity Value Units Method Reference Comment
Δr177.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Acetic acid, methyl ester = (Nitric oxide anion • Acetic acid, methyl ester)

By formula: NO- + C3H6O2 = (NO- • C3H6O2)

Quantity Value Units Method Reference Comment
Δr167.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + 3-Pentanone = (Nitric oxide anion • 3-Pentanone)

By formula: NO- + C5H10O = (NO- • C5H10O)

Quantity Value Units Method Reference Comment
Δr179.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, (1-methylethyl)- = (Nitric oxide anion • Benzene, (1-methylethyl)-)

By formula: NO- + C9H12 = (NO- • C9H12)

Quantity Value Units Method Reference Comment
Δr189.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, nitro- = (Nitric oxide anion • Benzene, nitro-)

By formula: NO- + C6H5NO2 = (NO- • C6H5NO2)

Quantity Value Units Method Reference Comment
Δr164.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, (trifluoromethyl)- = (Nitric oxide anion • Benzene, (trifluoromethyl)-)

By formula: NO- + C7H5F3 = (NO- • C7H5F3)

Quantity Value Units Method Reference Comment
Δr150.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

(Nitric oxide anion • 2Oxygen) + Oxygen = (Nitric oxide anion • 3Oxygen)

By formula: (NO- • 2O2) + O2 = (NO- • 3O2)

Quantity Value Units Method Reference Comment
Δr11.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 3Oxygen) + Oxygen = (Nitric oxide anion • 4Oxygen)

By formula: (NO- • 3O2) + O2 = (NO- • 4O2)

Quantity Value Units Method Reference Comment
Δr10.2 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr67.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 4Nitrogen) + Nitrogen = (Nitric oxide anion • 5Nitrogen)

By formula: (NO- • 4N2) + N2 = (NO- • 5N2)

Quantity Value Units Method Reference Comment
Δr13. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr89.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 4Oxygen) + Oxygen = (Nitric oxide anion • 5Oxygen)

By formula: (NO- • 4O2) + O2 = (NO- • 5O2)

Quantity Value Units Method Reference Comment
Δr9.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 5Nitrogen) + Nitrogen = (Nitric oxide anion • 6Nitrogen)

By formula: (NO- • 5N2) + N2 = (NO- • 6N2)

Quantity Value Units Method Reference Comment
Δr13. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 6Nitrogen) + Nitrogen = (Nitric oxide anion • 7Nitrogen)

By formula: (NO- • 6N2) + N2 = (NO- • 7N2)

Quantity Value Units Method Reference Comment
Δr12. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 7Nitrogen) + Nitrogen = (Nitric oxide anion • 8Nitrogen)

By formula: (NO- • 7N2) + N2 = (NO- • 8N2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr97.5J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 8Nitrogen) + Nitrogen = (Nitric oxide anion • 9Nitrogen)

By formula: (NO- • 8N2) + N2 = (NO- • 9N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Electron affinity of neutral species

EAneutral (eV) Method Reference Comment
0.040 ± 0.010N/AVelarde, Habteyes, et al., 2007 
0.0260 ± 0.0050LPESTravers, Cowles, et al., 1989ground state triplet anion
0.024 ± 0.010LPESSiegel, Celotta, et al., 1972 
0.02 ± 0.10CIDTTiernan and Wu, 1978 
0.0250 ± 0.0070ETSBurrow, 1974 
0.10 ± 0.10ECDChen and Wentworth, 1983 
0.02 ± 0.10EndoHughes, Lifschitz, et al., 1973 
0.026 ± 0.022KineParkes and Sugden, 1972 
0.68 ± 0.20EndoRefaey, 1976 
>0.10 ± 0.10NBIENalley, Compton, et al., 1973 
>0.089982EndoBerkowitz, Chupka, et al., 1971 
>0.06 ± 0.10EndoChantry, 1971 
>0.65 ± 0.10EIAEStockdale, Compton, et al., 1969From NO2
0.85 ± 0.10EIAEWilliams and Hamill, 1968From EtONO, nBuONO
0.828255SIPage and Goode, 1969The Magnetron method, lacking mass analysis, is not considered reliable.
0.910647SIFarragher, Page, et al., 1964The Magnetron method, lacking mass analysis, is not considered reliable.

Protonation reactions

Nitric oxide anion + Hydrogen cation = Nitrosyl hydride

By formula: NO- + H+ = HNO

Quantity Value Units Method Reference Comment
Δr1511.6 ± 0.63kJ/molD-EATravers, Cowles, et al., 1989gas phase; ground state triplet anion
Quantity Value Units Method Reference Comment
Δr1484.0 ± 1.4kJ/molH-TSTravers, Cowles, et al., 1989gas phase; ground state triplet anion

Ion clustering data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Nitric oxide anion + Argon = (Nitric oxide anion • Argon)

By formula: NO- + Ar = (NO- • Ar)

Quantity Value Units Method Reference Comment
Δr5.4 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr6.7 ± 1.3kJ/molN/ABowen and Eaton, 1988gas phase; B

Nitric oxide anion + Carbon dioxide = (Nitric oxide anion • Carbon dioxide)

By formula: NO- + CO2 = (NO- • CO2)

Quantity Value Units Method Reference Comment
Δr36. ± 1.kJ/molDTIllies, 1988gas phase; ΔrH(0 K)=36.0 kJ/mol; M
Δr32. ± 2.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr57.7kJ/molFADunkin, Fehsenfeld, et al., 1971gas phase; switching reaction(NO+)NO, ΔrH<; M
Quantity Value Units Method Reference Comment
Δr75.3J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=36.0 kJ/mol; M
Δr57.3J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 2Carbon dioxide)

By formula: (NO- • CO2) + CO2 = (NO- • 2CO2)

Quantity Value Units Method Reference Comment
Δr31. ± 2.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr71.5J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 2Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 3Carbon dioxide)

By formula: (NO- • 2CO2) + CO2 = (NO- • 3CO2)

Quantity Value Units Method Reference Comment
Δr30. ± 2.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 3Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 4Carbon dioxide)

By formula: (NO- • 3CO2) + CO2 = (NO- • 4CO2)

Quantity Value Units Method Reference Comment
Δr24. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr97.9J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 4Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 5Carbon dioxide)

By formula: (NO- • 4CO2) + CO2 = (NO- • 5CO2)

Quantity Value Units Method Reference Comment
Δr22. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 5Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 6Carbon dioxide)

By formula: (NO- • 5CO2) + CO2 = (NO- • 6CO2)

Quantity Value Units Method Reference Comment
Δr21.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AHiraoka and Yamabe, 1991gas phase; Entropy change calculated or estimated; M

Nitric oxide anion + Acetaldehyde = (Nitric oxide anion • Acetaldehyde)

By formula: NO- + C2H4O = (NO- • C2H4O)

Quantity Value Units Method Reference Comment
Δr164.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + 1,2-Ethanediol = C2H6NO3-

By formula: NO- + C2H6O2 = C2H6NO3-

Quantity Value Units Method Reference Comment
Δr113.0kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Nitric oxide anion + Acetone = (Nitric oxide anion • Acetone)

By formula: NO- + C3H6O = (NO- • C3H6O)

Quantity Value Units Method Reference Comment
Δr172.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Propanal = (Nitric oxide anion • Propanal)

By formula: NO- + C3H6O = (NO- • C3H6O)

Quantity Value Units Method Reference Comment
Δr159.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978, ref. to PA(NH3)=872. kJ/mol; M

Nitric oxide anion + Acetic acid, methyl ester = (Nitric oxide anion • Acetic acid, methyl ester)

By formula: NO- + C3H6O2 = (NO- • C3H6O2)

Quantity Value Units Method Reference Comment
Δr167.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + 1,3-Diazine = C4H4N3O-

By formula: NO- + C4H4N2 = C4H4N3O-

Quantity Value Units Method Reference Comment
Δr69.5 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + 2-Butanone = (Nitric oxide anion • 2-Butanone)

By formula: NO- + C4H8O = (NO- • C4H8O)

Quantity Value Units Method Reference Comment
Δr177.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Butanal = (Nitric oxide anion • Butanal)

By formula: NO- + C4H8O = (NO- • C4H8O)

Quantity Value Units Method Reference Comment
Δr164.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Ethyl Acetate = (Nitric oxide anion • Ethyl Acetate)

By formula: NO- + C4H8O2 = (NO- • C4H8O2)

Quantity Value Units Method Reference Comment
Δr174.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Ethyl ether = (Nitric oxide anion • Ethyl ether)

By formula: NO- + C4H10O = (NO- • C4H10O)

Quantity Value Units Method Reference Comment
Δr173.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Pyridine = C5H5N2O-

By formula: NO- + C5H5N = C5H5N2O-

Quantity Value Units Method Reference Comment
Δr56.9 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + 3-Pentanone = (Nitric oxide anion • 3-Pentanone)

By formula: NO- + C5H10O = (NO- • C5H10O)

Quantity Value Units Method Reference Comment
Δr179.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + n-Propyl acetate = (Nitric oxide anion • n-Propyl acetate)

By formula: NO- + C5H10O2 = (NO- • C5H10O2)

Quantity Value Units Method Reference Comment
Δr176.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, chloro- = (Nitric oxide anion • Benzene, chloro-)

By formula: NO- + C6H5Cl = (NO- • C6H5Cl)

Quantity Value Units Method Reference Comment
Δr161.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, fluoro- = (Nitric oxide anion • Benzene, fluoro-)

By formula: NO- + C6H5F = (NO- • C6H5F)

Quantity Value Units Method Reference Comment
Δr158.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, nitro- = (Nitric oxide anion • Benzene, nitro-)

By formula: NO- + C6H5NO2 = (NO- • C6H5NO2)

Quantity Value Units Method Reference Comment
Δr164.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene = C6H6NO-

By formula: NO- + C6H6 = C6H6NO-

Quantity Value Units Method Reference Comment
Δr40. ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Benzene = (Nitric oxide anion • Benzene)

By formula: NO- + C6H6 = (NO- • C6H6)

Quantity Value Units Method Reference Comment
Δr172.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, (trifluoromethyl)- = (Nitric oxide anion • Benzene, (trifluoromethyl)-)

By formula: NO- + C7H5F3 = (NO- • C7H5F3)

Quantity Value Units Method Reference Comment
Δr150.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzonitrile = (Nitric oxide anion • Benzonitrile)

By formula: NO- + C7H5N = (NO- • C7H5N)

Quantity Value Units Method Reference Comment
Δr172.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzaldehyde = (Nitric oxide anion • Benzaldehyde)

By formula: NO- + C7H6O = (NO- • C7H6O)

Quantity Value Units Method Reference Comment
Δr183.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Toluene = (Nitric oxide anion • Toluene)

By formula: NO- + C7H8 = (NO- • C7H8)

Quantity Value Units Method Reference Comment
Δr185.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + 3-Pentanone, 2,4-dimethyl- = (Nitric oxide anion • 3-Pentanone, 2,4-dimethyl-)

By formula: NO- + C7H14O = (NO- • C7H14O)

Quantity Value Units Method Reference Comment
Δr187.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Ethylbenzene = (Nitric oxide anion • Ethylbenzene)

By formula: NO- + C8H10 = (NO- • C8H10)

Quantity Value Units Method Reference Comment
Δr186.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, (1-methylethyl)- = (Nitric oxide anion • Benzene, (1-methylethyl)-)

By formula: NO- + C9H12 = (NO- • C9H12)

Quantity Value Units Method Reference Comment
Δr189.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Benzene, propyl- = (Nitric oxide anion • Benzene, propyl-)

By formula: NO- + C9H12 = (NO- • C9H12)

Quantity Value Units Method Reference Comment
Δr189.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitric oxide anion + Naphthalene = C10H8NO-

By formula: NO- + C10H8 = C10H8NO-

Quantity Value Units Method Reference Comment
Δr60.7 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Water = (Nitric oxide anion • Water)

By formula: NO- + H2O = (NO- • H2O)

Quantity Value Units Method Reference Comment
Δr77.4kJ/molPHPMSFrench, Hills, et al., 1973gas phase; M
Δr69.5kJ/molPESEaton, Arnold, et al., 1990gas phase; M
Δr95.0kJ/molMSBurdett and Hayhurst, 1982gas phase; flame source, about 1600 K; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KPHPMSFrench, Hills, et al., 1973gas phase; M
Δr100.J/mol*KMSBurdett and Hayhurst, 1982gas phase; flame source, about 1600 K; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
53.1296.SAMSPuckett and Teague, 1971gas phase; switching reaction(NO+)NO; M

(Nitric oxide anion • Water) + Water = (Nitric oxide anion • 2Water)

By formula: (NO- • H2O) + H2O = (NO- • 2H2O)

Quantity Value Units Method Reference Comment
Δr65.69kJ/molN/AEaton, Arnold, et al., 1990gas phase; Vertical Detachment Energy: 1.860±0.020 eV; B,M
Δr67.4kJ/molPHPMSFrench, Hills, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KPHPMSFrench, Hills, et al., 1973gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
35.293.HPMSMcAdams and Bone, 1972gas phase; M
36.296.FAHoward, Rundle, et al., 1971gas phase; M
36.296.SAMSPuckett and Teague, 1971gas phase; M

(Nitric oxide anion • 2Water) + Water = (Nitric oxide anion • 3Water)

By formula: (NO- • 2H2O) + H2O = (NO- • 3H2O)

Quantity Value Units Method Reference Comment
Δr74.5kJ/molPESEaton, Arnold, et al., 1990gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.308.PHPMSFrench, Hills, et al., 1973gas phase; M
25.293.HPMSMcAdams and Bone, 1972gas phase; M
25.296.FAHoward, Rundle, et al., 1971gas phase; M
25.296.SAMSPuckett and Teague, 1971gas phase; M

Nitric oxide anion + Hydrogen sulfide = H2NOS-

By formula: NO- + H2S = H2NOS-

Quantity Value Units Method Reference Comment
Δr23.4kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Nitric oxide anion + Ammonia = H3N2O-

By formula: NO- + H3N = H3N2O-

Quantity Value Units Method Reference Comment
Δr43.51kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Nitric oxide anion + Krypton = (Nitric oxide anion • Krypton)

By formula: NO- + Kr = (NO- • Kr)

Quantity Value Units Method Reference Comment
Δr9.6 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr10.5 ± 1.7kJ/molN/ABowen and Eaton, 1988gas phase; B

Nitric oxide anion + Nitric oxide = (Nitric oxide anion • Nitric oxide)

By formula: NO- + NO = (NO- • NO)

Quantity Value Units Method Reference Comment
Δr57.7kJ/molPILinn, Ono, et al., 1981gas phase; M
Δr56.9kJ/molPINg, Tiedemann, et al., 1977gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
29.296.SAMSPuckett and Teague, 1971gas phase; M

(Nitric oxide anion • Nitric oxide) + Nitric oxide = (Nitric oxide anion • 2Nitric oxide)

By formula: (NO- • NO) + NO = (NO- • 2NO)

Quantity Value Units Method Reference Comment
Δr31.kJ/molPILinn, Ono, et al., 1981gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
7.9296.SAMSPuckett and Teague, 1971gas phase; M

(Nitric oxide anion • 2Nitric oxide) + Nitric oxide = (Nitric oxide anion • 3Nitric oxide)

By formula: (NO- • 2NO) + NO = (NO- • 3NO)

Quantity Value Units Method Reference Comment
Δr15.kJ/molPILinn, Ono, et al., 1981gas phase; M

(Nitric oxide anion • 3Nitric oxide) + Nitric oxide = (Nitric oxide anion • 4Nitric oxide)

By formula: (NO- • 3NO) + NO = (NO- • 4NO)

Quantity Value Units Method Reference Comment
Δr15.kJ/molPILinn, Ono, et al., 1981gas phase; M

(Nitric oxide anion • 4Nitric oxide) + Nitric oxide = (Nitric oxide anion • 5Nitric oxide)

By formula: (NO- • 4NO) + NO = (NO- • 5NO)

Quantity Value Units Method Reference Comment
Δr9.6kJ/molPILinn, Ono, et al., 1981gas phase; M

Nitric oxide anion + Nitrous oxide = (Nitric oxide anion • Nitrous oxide)

By formula: NO- + N2O = (NO- • N2O)

Quantity Value Units Method Reference Comment
Δr60. ± 100.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr75.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr62.3J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=32.2 kJ/mol; M

(Nitric oxide anion • Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 2Nitrous oxide)

By formula: (NO- • N2O) + N2O = (NO- • 2N2O)

Quantity Value Units Method Reference Comment
Δr24.7 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr19.2kJ/molN/ACoe, Snodgrass, et al., 1987gas phase; B
Δr23.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr30.kJ/molPESCoe, Snodgrass, et al., 1986gas phase; D(N2O)2 not accounted for; M
Quantity Value Units Method Reference Comment
Δr-4.2 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 2Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 3Nitrous oxide)

By formula: (NO- • 2N2O) + N2O = (NO- • 3N2O)

Quantity Value Units Method Reference Comment
Δr21.8 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr21.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr88.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-5.0 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 3Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 4Nitrous oxide)

By formula: (NO- • 3N2O) + N2O = (NO- • 4N2O)

Quantity Value Units Method Reference Comment
Δr20.9 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr19.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-5.0 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 4Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 5Nitrous oxide)

By formula: (NO- • 4N2O) + N2O = (NO- • 5N2O)

Quantity Value Units Method Reference Comment
Δr17.6 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr19.kJ/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-6.3 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 5Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 6Nitrous oxide)

By formula: (NO- • 5N2O) + N2O = (NO- • 6N2O)

Quantity Value Units Method Reference Comment
Δr18.4 ± 0.84kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M,M
Quantity Value Units Method Reference Comment
Δr-7.9 ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 6Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 7Nitrous oxide)

By formula: (NO- • 6N2O) + N2O = (NO- • 7N2O)

Quantity Value Units Method Reference Comment
Δr17.6 ± 1.3kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M,M
Quantity Value Units Method Reference Comment
Δr-11. ± 4.2kJ/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

Nitric oxide anion + Nitrogen = (Nitric oxide anion • Nitrogen)

By formula: NO- + N2 = (NO- • N2)

Quantity Value Units Method Reference Comment
Δr19. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr20.kJ/molDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr18.kJ/molHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr22.kJ/molHPMSTurner and Conway, 1976gas phase; M
Δr19.kJ/molDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr57.7J/mol*KDTGheno and Fitaire, 1987gas phase; ΔrS+-12. J/mol*K; M
Δr55.6J/mol*KHPMSSpeller, Fitaire, et al., 1983gas phase; Entropy change is questionable; M
Δr79.1J/mol*KHPMSTurner and Conway, 1976gas phase; M
Δr65.7J/mol*KDTJohnsen, Huang, et al., 1975gas phase; corrected for ln T by Keesee and Castleman, 1986; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; M

(Nitric oxide anion • Nitrogen) + Nitrogen = (Nitric oxide anion • 2Nitrogen)

By formula: (NO- • N2) + N2 = (NO- • 2N2)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr16.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M
Δr52.7J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(Nitric oxide anion • 2Nitrogen) + Nitrogen = (Nitric oxide anion • 3Nitrogen)

By formula: (NO- • 2N2) + N2 = (NO- • 3N2)

Quantity Value Units Method Reference Comment
Δr16. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr70.3J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Nitric oxide anion • 3Nitrogen) + Nitrogen = (Nitric oxide anion • 4Nitrogen)

By formula: (NO- • 3N2) + N2 = (NO- • 4N2)

Quantity Value Units Method Reference Comment
Δr14. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
2.204.HPMSSpeller, Fitaire, et al., 1983gas phase; M

(Nitric oxide anion • 4Nitrogen) + Nitrogen = (Nitric oxide anion • 5Nitrogen)

By formula: (NO- • 4N2) + N2 = (NO- • 5N2)

Quantity Value Units Method Reference Comment
Δr13. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr89.1J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 5Nitrogen) + Nitrogen = (Nitric oxide anion • 6Nitrogen)

By formula: (NO- • 5N2) + N2 = (NO- • 6N2)

Quantity Value Units Method Reference Comment
Δr13. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 6Nitrogen) + Nitrogen = (Nitric oxide anion • 7Nitrogen)

By formula: (NO- • 6N2) + N2 = (NO- • 7N2)

Quantity Value Units Method Reference Comment
Δr12. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 7Nitrogen) + Nitrogen = (Nitric oxide anion • 8Nitrogen)

By formula: (NO- • 7N2) + N2 = (NO- • 8N2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr97.5J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 8Nitrogen) + Nitrogen = (Nitric oxide anion • 9Nitrogen)

By formula: (NO- • 8N2) + N2 = (NO- • 9N2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka and Yamabe, 1989gas phase; M

(Nitric oxide anion • 9Nitrogen) + Nitrogen = (Nitric oxide anion • 10Nitrogen)

By formula: (NO- • 9N2) + N2 = (NO- • 10N2)

Quantity Value Units Method Reference Comment
Δr7.03kJ/molPHPMSHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr79.J/mol*KN/AHiraoka and Yamabe, 1989gas phase; Entropy change calculated or estimated; M

Nitric oxide anion + Sulfur dioxide = (Nitric oxide anion • Sulfur dioxide)

By formula: NO- + O2S = (NO- • O2S)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
33.296.SAMSVanderhoff and Heimerl, 1977gas phase; switching reaction(NO+)NO; Puckett and Teague, 1971, 2; M

Nitric oxide anion + Oxygen = (Nitric oxide anion • Oxygen)

By formula: NO- + O2 = (NO- • O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr60.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
-2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; DG>; M

(Nitric oxide anion • Oxygen) + Oxygen = (Nitric oxide anion • 2Oxygen)

By formula: (NO- • O2) + O2 = (NO- • 2O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 2Oxygen) + Oxygen = (Nitric oxide anion • 3Oxygen)

By formula: (NO- • 2O2) + O2 = (NO- • 3O2)

Quantity Value Units Method Reference Comment
Δr11.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 3Oxygen) + Oxygen = (Nitric oxide anion • 4Oxygen)

By formula: (NO- • 3O2) + O2 = (NO- • 4O2)

Quantity Value Units Method Reference Comment
Δr10.2 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr67.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 4Oxygen) + Oxygen = (Nitric oxide anion • 5Oxygen)

By formula: (NO- • 4O2) + O2 = (NO- • 5O2)

Quantity Value Units Method Reference Comment
Δr9.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

Nitric oxide anion + Ozone = (Nitric oxide anion • Ozone)

By formula: NO- + O3 = (NO- • O3)

Quantity Value Units Method Reference Comment
Δr57.7kJ/molFAFehsenfeld, 1974gas phase; switching reaction(NO+)CO2, ΔrH<; M

Nitric oxide anion + Xenon = (Nitric oxide anion • Xenon)

By formula: NO- + Xe = (NO- • Xe)

Quantity Value Units Method Reference Comment
Δr16.3 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr17.2 ± 2.5kJ/molN/ABowen and Eaton, 1988gas phase; B

Constants of diatomic molecules

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through March, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 14N16O-
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Evidence for additional compound states ("resonance" related to the "grandparents" b 3Π, A 1Π, and c 3Π, of NO+) in the 12-18 eV region of the electron transmission Sanche and Schulz, 1971, Schulz, 1973 and electroionization Carbonneau and Marmet, 1974 spectra of NO.
The nature of the state (or states) involved in the production of N(2D) + O- by dissociative electron attachmnet (7-12 eV) has been discussed by van Brunt and Kieffer, 1974; see also Thulstrup, Thulstrup, et al., 1974.
(3Σ-) 51700 1 2320 13 2         
(3Σ+) 43800 1 2380 12 2         
(3Π) 43400 1 2370 12 2         
(1Σ+) 40400 1 2330 8 2         
b 1Σ+ (9300) 3           
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a 1Δ 6050 1492 3 (8)       1.262 3  
X 3Σ- 0 1363 3 8  1.427 4     1.258 4  

Notes

1Symmetries assigned on the basis of theoretical calculations Lefebvre-Brion, 1973. The states consist of two Rydberg electrons temporarily bound to the NO+ X 1Σ+ core.
2Short vibrational progressions of resonances in teh electron transmission current Sanche and Schulz, 1971 predicted widths range from 1 to 25 meV Pearson and Lefebvre-Brion, 1976.
3From the analysis Tronc, Huetz, et al., 1975, Teillet-Billy and Fiquet-Fayard, 1977 of electron scattering data Spence and Schulz, 1971, Schulz, 1973, Burrow, 1974, Zecca, Lazzizzera, et al., 1974. For the ground state Siegel, Celotta, et al., 1972 estimate ωe ~1470 cm-1 Siegel, Celotta, et al., 1972, see 4.
4Franck-Condon factor analysis of the photodetachment spectrum Siegel, Celotta, et al., 1972. The analysis of electron scattering data Teillet-Billy and Fiquet-Fayard, 1977 leads to re = 1.267 Å Teillet-Billy and Fiquet-Fayard, 1977.
5From D00(NO) and the electron affinities of O and NO.
6From the photodetachment spectrum Siegel, Celotta, et al., 1972. Good agreement with McFarland, Dunkin, et al., 1972 and Parkes and Sugden, 1972.

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hiraoka and Yamabe, 1989
Hiraoka, K.; Yamabe, S., How are Nitrogen Molecules Bound to NO2+ and NO+?, J. Chem. Phys., 1989, 90, 6, 3268, https://doi.org/10.1063/1.455880 . [all data]

Gheno and Fitaire, 1987
Gheno, F.; Fitaire, M., Association of N2 with NH4+ and H3O+(H2O)n, n = 1,2,3, J. Chem. Phys., 1987, 87, 2, 953, https://doi.org/10.1063/1.453250 . [all data]

Speller, Fitaire, et al., 1983
Speller, C.V.; Fitaire, M.; Pointu, A.M., Three - Body Association Reactions of NO+ and O2+ with N2, J. Chem. Phys., 1983, 79, 5, 2190, https://doi.org/10.1063/1.446067 . [all data]

Turner and Conway, 1976
Turner, D.L.; Conway, D.C., Stability of the NO+.N2 Ion Cluster, J. Chem. Phys., 1976, 65, 10, 3944, https://doi.org/10.1063/1.432887 . [all data]

Johnsen, Huang, et al., 1975
Johnsen, R.; Huang, C.M.; Biondi, M.A., The Formation and Breakup of NO2+.N2 Clusters in N2 at Low Temperatures, J. Chem. Phys., 1975, 63, 8, 3374, https://doi.org/10.1063/1.431751 . [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Dunkin, Fehsenfeld, et al., 1971
Dunkin, D.B.; Fehsenfeld, F.C.; Schelmetekopf, A.L.; Ferguson, E.E., Three-Body Association Reactions of NO+ with O2, N2, and CO2, J. Chem. Phys., 1971, 54, 9, 3817, https://doi.org/10.1063/1.1675432 . [all data]

Hiraoka, Fujimaki, et al., 1994
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Sato, T.; Yamabe, S., Gas-Phase Solavtion of NO+, O2+, N2O+, and H3O+ with N2O, J. Chem. Phys., 1994, 101, 5, 4073, https://doi.org/10.1063/1.467524 . [all data]

Illies, 1988
Illies, A.J., Thermochemistry of the Gas - Phase Ion - Molecule Clustering of CO2+CO2, SO2+CO2, N2O+N2O, O2+CO2, NO+CO2 and NO+N2O: Description of a New Hybrid Drift Tube/Ion Source with Coaxial Electron Beam and Ion Exit Apertures, J. Phys. Chem., 1988, 92, 10, 2889, https://doi.org/10.1021/j100321a037 . [all data]

French, Hills, et al., 1973
French, M.A.; Hills, L.P.; Kebarle, P., Kinetics and Temperature Dependence of the Hydration of the Nitrosonium Ion in the Gas Phase, Can. J. Chem., 1973, 51, 3, 456, https://doi.org/10.1139/v73-068 . [all data]

Eaton, Arnold, et al., 1990
Eaton, J.G.; Arnold, S.T.; Bowen, K.H., The Negative Ion Photoelectron (Photodetachment) Spectra of NO-(H2O)n=1,2, Int. J. Mass Spectrom. Ion Proc., 1990, 102, 303, https://doi.org/10.1016/0168-1176(90)80066-C . [all data]

Burdett and Hayhurst, 1982
Burdett, N.A.; Hayhurst, A.N., Hydration of gas phase ions and the measurement of boundary layer cooling during flame sampling into a mass spectrometer., J. Chem. Soc. Faraday Trans. 1, 1982, 78, 2997. [all data]

Puckett and Teague, 1971
Puckett, L.J.; Teague, A.W., Production of H3O+.nH2O from NO+ Precursor in NO - H2O Gas Mixtures, J. Chem. Phys., 1971, 54, 6, 2564, https://doi.org/10.1063/1.1675213 . [all data]

McAdams and Bone, 1972
McAdams, M.J.; Bone, L.I., Reactions of NO+ with H2O in a Photoionization Mass Spectrometer, J. Chem. Phys., 1972, 57, 5, 2173, https://doi.org/10.1063/1.1678549 . [all data]

Howard, Rundle, et al., 1971
Howard, C.J.; Rundle, H.W.; Kaufman, F., Water Cluster Formation Rates of NO+ in He, Ar, N2, and O2 at 296 K, J. Chem. Phys., 1971, 55, 10, 4772, https://doi.org/10.1063/1.1675576 . [all data]

Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S., Cluster Ions: Gas Phase Stabilities of NO+(O2)n and NO+(CO2)n with n = 1 - 5, J. Chem. Phys., 1991, 95, 9, 6800, https://doi.org/10.1063/1.461518 . [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Coe, Snodgrass, et al., 1987
Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H., Photoelectron spectroscopy of the negative cluster ions, NO-(N2O)n=1,2, J. Chem. Phys., 1987, 87, 4302. [all data]

Hiraoka, Fujimaki, et al., 1994, 2
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Gas-phase clustering reactions of O2(-), NO-, and O- with N2O: Isomeric structures for (NO-N2O)(-), J. Phys. Chem., 1994, 98, 34, 8295, https://doi.org/10.1021/j100085a006 . [all data]

Coe, Snodgrass, et al., 1986
Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H., Negative ion photoelectron spectroscopy of N2O- and (N2O)2-, Chem. Phys. Lett., 1986, 124, 274. [all data]

Speller and Fitaire, 1983
Speller, C.V.; Fitaire, M., Proceedings of the 16th International Conference on Phenomena of Ionized Gases, H. Boetticher, H. Wenk and E. Shulz - Gulde, ed(s)., ICPIG, Dusseldorf, 1983, 568. [all data]

Travers, Cowles, et al., 1989
Travers, M.J.; Cowles, D.C.; Ellison, G.B., Reinvestigation of the Electron Affinities of O2 and NO, Chem. Phys. Lett., 1989, 164, 5, 449, https://doi.org/10.1016/0009-2614(89)85237-6 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T., The Binding Energy between NO and NO+, J. Chem. Phys., 1977, 66, 9, 3985, https://doi.org/10.1063/1.434450 . [all data]

Velarde, Habteyes, et al., 2007
Velarde, L.; Habteyes, T.; Grumbling, E.R.; Pichugin, K.; Sanov, A., Solvent resonance effect on the anisotropy of NO-(N2O)(n) cluster anion photodetachment, J. Chem. Phys., 2007, 127, 8, 084302, https://doi.org/10.1063/1.2766948 . [all data]

Siegel, Celotta, et al., 1972
Siegel, M.W.; Celotta, R.J.; Hall, J.L.; Levine, J.; Bennett, R.A., Molecular Photodetachment Spectroscopy. I. The Electron Affinity of Nitric Oxide and the Molecular Constants of NO-, Phys. Rev. A, 1972, 6, 2, 607, https://doi.org/10.1103/PhysRevA.6.607 . [all data]

Tiernan and Wu, 1978
Tiernan, T.O.; Wu, R.L.C., Thermochemical Data for Molecular Negative Ions from Collisional Dissociation Thresholds, Adv. Mass Spectrom., 1978, 7A, 136. [all data]

Burrow, 1974
Burrow, P.D., Temporary negative ion formation in NO and O2, Chem. Phys. Lett., 1974, 26, 265. [all data]

Chen and Wentworth, 1983
Chen, E.C.M.; Wentworth, W.E., Determination of molecular electron affinities using the electron capture detector in the pulse sampling mode at steady state, J. Phys. Chem., 1983, 87, 45. [all data]

Hughes, Lifschitz, et al., 1973
Hughes, B.M.; Lifschitz, C.; Tiernan, T.O., Electron affinities from endothermic negative-ion charge-transfer reactions. III. NO, NO2, S2, CS2, Cl2, Br2, I2, and C2H, J. Chem. Phys., 1973, 59, 3162. [all data]

Parkes and Sugden, 1972
Parkes, D.A.; Sugden, T.M., Electron attachment and detachment in nitric oxide, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 600. [all data]

Refaey, 1976
Refaey, K.M.A., Endoergic ion-molecule-Collision Processes of Negative Ions. IV. Collisions of I- on NO2, N2O and NO, Int. J. Mass Spectrom. Ion Phys., 1976, 21, 21. [all data]

Nalley, Compton, et al., 1973
Nalley, S.J.; Compton, R.N.; Schweinler, H.C.; Anderson, V.E., Molecular electron affinities from collisional ionization of cesium. I. NO, NO2, and N2O, J. Chem. Phys., 1973, 59, 4125. [all data]

Berkowitz, Chupka, et al., 1971
Berkowitz, J.; Chupka, W.A.; Gutman, D., Electron Affinities of O2, O3, NO, NO2, and NO3 by Endothermic Charge Transfer, J. Chem. Phys., 1971, 55, 6, 2733, https://doi.org/10.1063/1.1676488 . [all data]

Chantry, 1971
Chantry, P.J., Doppler broadening in beam experiments, J. Chem. Phys., 1971, 55, 2746. [all data]

Stockdale, Compton, et al., 1969
Stockdale, J.A.D.; Compton, R.N.; Hurst, G.S.; Reinhardt, P.W., Collisions of Monoenergetic Electrons with NO2: Possible Lower Limits to the Electron Affinities of O2 and NO, J. Chem. Phys., 1969, 50, 5, 2176, https://doi.org/10.1063/1.1671347 . [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Page and Goode, 1969
Page, F.M.; Goode, G.C., Negative Ions and the Magnetron., Wiley, NY, 1969. [all data]

Farragher, Page, et al., 1964
Farragher, A.L.; Page, F.M.; Wheeler, R.C., Electron Affinities of the Nitrogen Oxides, Disc. Faraday Soc., 1964, 37, 203, https://doi.org/10.1039/df9643700203 . [all data]

Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G., Photodetachment Spectroscopy of Negative Cluster Ions, in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Vanderhoff and Heimerl, 1977
Vanderhoff, J.A.; Heimerl, J.M., The Equilibrium Constant for NO+(NO) ---> NO+(SO2) and the Rate Coefficient of SO2 Clustering to NO+, at 296 K, J. Chem. Phys., 1977, 66, 8, 3838, https://doi.org/10.1063/1.434380 . [all data]

Puckett and Teague, 1971, 2
Puckett, L.J.; Teague, M.W., Ion-Molecule Reactions in NO - NH3 Gas Mixtures, J. Chem. Phys., 1971, 54, 11, 4860, https://doi.org/10.1063/1.1674763 . [all data]

Fehsenfeld, 1974
Fehsenfeld, F.C., Clustering of O3 to O2+ and NO+, J. Chem. Phys., 1974, 61, 4, 1588, https://doi.org/10.1063/1.1682129 . [all data]

Sanche and Schulz, 1971
Sanche, L.; Schulz, G.J., Vibrational progressions and Rydberg series of O2 and NO, Phys. Rev. Lett., 1971, 27, 1333. [all data]

Schulz, 1973
Schulz, G.J., Resonances in electron impact on diatomic molecules, Rev. Mod. Phys., 1973, 45, 423. [all data]

Carbonneau and Marmet, 1974
Carbonneau, R.; Marmet, P., The electroionization spectrum of nitric oxide, Can. J. Phys., 1974, 52, 1885. [all data]

van Brunt and Kieffer, 1974
van Brunt, R.J.; Kieffer, L.J., Angular distribution of O- from dissociative electron attachment to NO, Phys. Rev. A: Gen. Phys., 1974, 10, 1633. [all data]

Thulstrup, Thulstrup, et al., 1974
Thulstrup, P.W.; Thulstrup, E.W.; Andersen, A.; Ohrn, Y., Configuration interaction calculations of some observed states of NO-, NO, NO+, and NO2+, J. Chem. Phys., 1974, 60, 3975. [all data]

Lefebvre-Brion, 1973
Lefebvre-Brion, H., Nature of the resonant states of NO-, Chem. Phys. Lett., 1973, 19, 456. [all data]

Pearson and Lefebvre-Brion, 1976
Pearson, P.K.; Lefebvre-Brion, H., Calculations of the widths of some Feshbach resonances in CO- and NO-, Phys. Rev. A: Gen. Phys., 1976, 13, 2106-2113. [all data]

Tronc, Huetz, et al., 1975
Tronc, M.; Huetz, A.; Landau, M.; Pichou, F.; Reinhardt, J., Resonant vibrational excitation of the NO ground state by electron impact in the 0.1-3 eV energy range, J. Phys. B:, 1975, 8, 1160. [all data]

Teillet-Billy and Fiquet-Fayard, 1977
Teillet-Billy, D.; Fiquet-Fayard, F., The NO- 3Σ- and 1Δ resonances: theoretical analysis of electron scattering data, J. Phys. B:, 1977, 10, 111. [all data]

Spence and Schulz, 1971
Spence, D.; Schulz, G.J., Vibrational excitation and compound states in NO, Phys. Rev. A: Gen. Phys., 1971, 3, 1968. [all data]

Zecca, Lazzizzera, et al., 1974
Zecca, A.; Lazzizzera, I.; Krauss, M.; Kuyatt, C.E., Electron scattering from NO and N2O below 10 eV, J. Chem. Phys., 1974, 61, 4560. [all data]

McFarland, Dunkin, et al., 1972
McFarland, M.; Dunkin, D.B.; Fehsenfeld, F.C.; Schmeltekopf, A.L.; Ferguson, E.E., Collisional detachment studies of NO-, J. Chem. Phys., 1972, 56, 2358. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References