Gallium trimethyl

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Quantity Value Units Method Reference Comment
Δfgas-11.0 ± 1.9kcal/molReviewMartinho Simões 
Δfgas-6.1 ± 2.4kcal/molReviewMartinho Simões 
Δfgas-8.6 ± 2.4kcal/molReviewMartinho SimõesSelected data. The enthalpy of formation is the average of the values from Long and Sackman, 1958 and Fowell and Mortimer, 1958.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-19.0 ± 1.9kcal/molReviewMartinho SimõesMS
Δfliquid-14.1 ± 2.4kcal/molReviewMartinho SimõesMS
Δfliquid-16.5 ± 2.4kcal/molReviewMartinho SimõesSelected data. The enthalpy of formation is the average of the values from Long and Sackman, 1958 and Fowell and Mortimer, 1958.; MS
Quantity Value Units Method Reference Comment
Δcliquid-701.0 ± 1.9kcal/molCC-SBLong and Sackman, 1958Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.; MS
Quantity Value Units Method Reference Comment
liquid60.25cal/mol*KN/ALebedev, Smirnova, et al., 1988DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
44.93298.15Lebedev, Smirnova, et al., 1988T = 0 to 330 K.; DH
42.751298.15Maslova, Novoselova, et al., 1973T = 60 to 300 K.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Gallium trimethyl (l) + 3Iodine (cr) = GaI3 (cr) + 3Methane, iodo- (l)

By formula: C3H9Ga (l) + 3I2 (cr) = GaI3 (cr) + 3CH3I (l)

Quantity Value Units Method Reference Comment
Δr-47.8 ± 2.0kcal/molRSCFowell and Mortimer, 1958Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.

Gallium trimethyl (l) + 2Iodine (cr) = CH3GaI2 (cr) + 2Methane, iodo- (l)

By formula: C3H9Ga (l) + 2I2 (cr) = CH3GaI2 (cr) + 2CH3I (l)

Quantity Value Units Method Reference Comment
Δr-37.9 ± 1.0kcal/molRSCFowell and Mortimer, 1958Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.

Gallium trimethyl (g) = C2H6Ga (g) + Methane (g)

By formula: C3H9Ga (g) = C2H6Ga (g) + CH4 (g)

Quantity Value Units Method Reference Comment
Δr61.9 - 65.0kcal/molN/ASmith and Patrick, 1983 
Δr63.0 ± 4.0kcal/molN/AMcMillen and Golden, 1982 

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Martinho Simões
Martinho Simões, J.A., Private communication (see http://webbook.nist.gov/chemistry/om/). [all data]

Long and Sackman, 1958
Long, L.H.; Sackman, J.F., The heat of formation and physical properties of gallium trimethyl, Trans. Faraday Soc., 1958, 54, 1797, https://doi.org/10.1039/tf9585401797 . [all data]

Fowell and Mortimer, 1958
Fowell, P.A.; Mortimer, C.T., J. Chem. Soc., 1958, 3734.. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Lebedev, Smirnova, et al., 1988
Lebedev, B.V.; Smirnova, N.N.; Kulagina, T.G., Enthalpy, entropy and Gibbs energy in bulk polymerization of cyclohexene with ring-opening between 0 and 330 K at standard pressure, Makromol. Chem., Rapid Commun., 1988, 9, 781-784. [all data]

Maslova, Novoselova, et al., 1973
Maslova, V.A.; Novoselova, N.V.; Moseeva, E.M.; Berezhnaya, N.D.; Rabinovich, I.B., Specific heat and phase changes of triethylindium, triethyl antimony, and trimethyl gallium, Trudy. Khim. Khim. Tekhnol., 1973, (2), 51-52. [all data]

Smith and Patrick, 1983
Smith, G.P.; Patrick, R., Int. J. Chem. Kinet., 1983, 15, 167. [all data]

McMillen and Golden, 1982
McMillen, D.F.; Golden, D.M., Hydrocarbon bond dissociation energies, Ann. Rev. Phys. Chem., 1982, 33, 493. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References