Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

iron oxide


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Deltafgas251.04kJ/molReviewChase, 1998Data last reviewed in June, 1965
Quantity Value Units Method Reference Comment
gas,1 bar241.92J/mol*KReviewChase, 1998Data last reviewed in June, 1965

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 5000. - 6000.
A 36.19457
B -0.101054
C 0.648056
D -0.070287
E 0.238204
F 239.4708
G 283.5229
H 251.0404
ReferenceChase, 1998
Comment Data last reviewed in June, 1965

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Deltafliquid-249.53kJ/molReviewChase, 1998Data last reviewed in June, 1965
Quantity Value Units Method Reference Comment
liquid,1 bar75.40J/mol*KReviewChase, 1998Data last reviewed in June, 1965
Quantity Value Units Method Reference Comment
Deltafsolid-272.04kJ/molReviewChase, 1998Data last reviewed in June, 1965
Quantity Value Units Method Reference Comment
solid60.75J/mol*KReviewChase, 1998Data last reviewed in June, 1965

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 1650. - 5000.
A 68.19920
B -4.501232×10-10
C 1.195227×10-10
D -1.064302×10-11
E -3.092680×10-10
F -281.4326
G 137.8377
H -249.5321
ReferenceChase, 1998
Comment Data last reviewed in June, 1965

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 1650.
A 45.75120
B 18.78553
C -5.952201
D 0.852779
E -0.081265
F -286.7429
G 110.3120
H -272.0441
ReferenceChase, 1998
Comment Data last reviewed in June, 1965

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through June, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for (56)Fe16O
StateTeomegaeomegaexeomegaeyeBealphaegammaeDebetaereTrans.nu00
           R 41480 H
missing citation; Bass, Kuebler, et al., 1964; missing citation
c 26441 [545] H         c rarrow A 1 R 22326 H
Rosen, 1945; Malet and Rosen, 1945; West and Broida, 1975
c' 23569 [535] H 2         c' rarrow A 1 R 19449 H
West and Broida, 1975
b 21962 [667] H   [0.4717] 3     [1.695] b 4 lrarrow A 1 R 17908 H
Rosen, 1945; missing citation; missing citation; Callear and Norrish, 1960; Bass, Kuebler, et al., 1964; Barrow and Senior, 1969; West and Broida, 1975
(21865) [(661)] H         b 4 lrarrow A 4 1 R 17808 H
Rosen, 1945; missing citation; missing citation; Callear and Norrish, 1960; Bass, Kuebler, et al., 1964; Barrow and Senior, 1969; West and Broida, 1975
StateTeomegaeomegaexeomegaeyeBealphaegammaeDebetaereTrans.nu00
a 21245 820 H 1  [0.497] 5     [1.651] a 6 lrarrow A 1 R 17267 H
Rosen, 1945; missing citation; missing citation; Callear and Norrish, 1960; Bass, Kuebler, et al., 1964; West and Broida, 1975
B (5Pi) 14404 650 7 H 5 8        B rarrow A 1 R 10340 H
Bass and Benedict, 1952; West and Broida, 1975
           B rarrow X R 14245 H
Malet and Rosen, 1945; Bass and Benedict, 1952; West and Broida, 1975
A 5Sigma+ 3948 9 880.53 3 Z 4.63  0.51271 3 0.00376  [6.6E-7]  1.6259  3905 10
Malet and Rosen, 1945; West and Broida, 1975; Engelking and Lineberger, 1977
StateTeomegaeomegaexeomegaeyeBealphaegammaeDebetaereTrans.nu00
X 5Delta 0 9 965 7        (1.57) 11 12 

Notes

1The similarity of the vibrational constants suggests a common lower state for the five systems. Uncertain.
2Fragments of an emission system, 18500 - 20000 cm-1.
3From the rotational analysis Barrow and Senior, 1969 of four bands of the short-wavelength component of b-A. They appear to be the Omega'= Omega" = 0 subbands of a quintet or septet Sigma-Sigma transition. An earlier analysis by Dhumwad and Narasimham, 1967 is incorrect.
4Lifetime tau ~ 500 ns West and Broida, 1975.
5Rotational analysis using tunable-laser excited fluorescence spectroscopy West and Broida, 1975.
6Lifetime tau ~ 450 ns West and Broida, 1975.
7From a re-analysis of B rarrow X by Engelking and Lineberger, 1977. The FeO- photoelectron spectrum Engelking and Lineberger, 1977 gives a ground state frequency of 970 ± 60 cm-1
8Large number of emission bands, 7100 - 15000 cm-1; tentative vibrational analysis.
9Symmetries assigned Engelking and Lineberger, 1977 on the basis of ab initio calculations Bagus and Preston, 1973.
10From 0-0 band assignments for B rarrow X Engelking and Lineberger, 1977 and B rarrow A Bass and Benedict, 1952, West and Broida, 1975. From the FeO- photoelectron spectrum Engelking and Lineberger, 1977 obtain 3990 ± 100 cm-1.
11Estimated Engelking and Lineberger, 1977 from relative vibrational intensities in the photoelectron spectrum of FeO-.
12The IR transition strength measured at 880 cm-1 von Rosenberg and Wray, 1972, Fissan and Sulzmann, 1972 requires reinterpretation in view of the recent reassignment of the low-lying states Engelking and Lineberger, 1977.
13Thermochemica1 value (mass-spectrom.) Cheetam and Barrow, 1967, Balducci, DeMaria, et al., 1971, Hildenbrand, 1975. See also Brewer and Mastick, 1951, Lagerqvist and Huldt, 1953.
14Electron impact appearance potential Hildenbrand, 1975.
15From D00(FeO) and the electron affinities of FeO and O.
16From the laser photoelectron spectrum of FeO- Engelking and Lineberger, 1977.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Bass, Kuebler, et al., 1964
Bass, A.M.; Kuebler, N.A.; Nelson, L.S., Observation of FeO in absorption by flash heating and kinetic spectroscopy, J. Chem. Phys., 1964, 40, 3121. [all data]

Rosen, 1945
Rosen, B., Spectra of diatomic oxides by the method of exploded wire, Nature (London), 1945, 156, 570. [all data]

Malet and Rosen, 1945
Malet, L.; Rosen, B., Contribution a l'etude du spectre de FeO, Bull. Soc. R. Sci. Liege, 1945, 14, 377. [all data]

West and Broida, 1975
West, J.B.; Broida, H.P., Chemiluminescence and photoluminescence of diatomic iron oxide, J. Chem. Phys., 1975, 62, 2566. [all data]

Callear and Norrish, 1960
Callear, A.B.; Norrish, R.G.W., The behaviour of additives in explosions and the mechanism of antiknock, Proc. R. Soc. London A, 1960, 259, 304-324. [all data]

Barrow and Senior, 1969
Barrow, R.F.; Senior, M., Ground state of gaeous FeO, Nature (London), 1969, 223, 1359. [all data]

Bass and Benedict, 1952
Bass, A.M.; Benedict, W.S., A new infrared band system of FeO, Astrophys. J., 1952, 116, 652. [all data]

Engelking and Lineberger, 1977
Engelking, P.C.; Lineberger, W.C., Laser photoelecton spectrometry of FeO-: Electron affinity, electronic state separations, and ground state vibrations of iron oxide, and a new ground state assignment, J. Chem. Phys., 1977, 66, 5054. [all data]

Dhumwad and Narasimham, 1967
Dhumwad, R.K.; Narasimham, N.A., Rotational analysis of some of the bands of the orange system of FeO, Proc. Indian Acad. Sci. Sect. A, 1967, 64, 283. [all data]

Bagus and Preston, 1973
Bagus, P.S.; Preston, H.J.T., Lowest 5«SIGMA»+ state of FeO: an ab initio investigation, J. Chem. Phys., 1973, 59, 2986. [all data]

von Rosenberg and Wray, 1972
von Rosenberg, C.W., Jr.; Wray, K.L., Shock tube studies on Fe(CO)5+O2: 11«mu» FeO emission and kinetics, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 531. [all data]

Fissan and Sulzmann, 1972
Fissan, H.; Sulzmann, K.G.P., Absorption coefficients for the infrared vibration-rotation spectrum of FeO, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 979. [all data]

Cheetam and Barrow, 1967
Cheetam, C.J.; Barrow, R.F., Adv. High Temp. Chem., 1967, 1, 7. [all data]

Balducci, DeMaria, et al., 1971
Balducci, G.; DeMaria, G.; Guido, M.; Piacente, V., Dissociation energy of FeO, J. Chem. Phys., 1971, 55, 2596. [all data]

Hildenbrand, 1975
Hildenbrand, D.L., Thermochemistry of molecular FeO, FeO+ and FeO2, Chem. Phys. Lett., 1975, 34, 352. [all data]

Brewer and Mastick, 1951
Brewer, L.; Mastick, D.F., The stability of gaseous diatomic oxides, J. Chem. Phys., 1951, 19, 834. [all data]

Lagerqvist and Huldt, 1953
Lagerqvist, A.; Huldt, L., Die Dissoziationsenergien der gasformigen Oxyde CrO und FeO, Z. Naturforsch. A, 1953, 8, 493. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, References