Carbon dioxide
- Formula: CO2
- Molecular weight: 44.0095
- IUPAC Standard InChIKey: CURLTUGMZLYLDI-UHFFFAOYSA-N
- CAS Registry Number: 124-38-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Carbon oxide (CO2); Carbonic acid, gas; Carbonic anhydride; Dry ice; CO2; Anhydride carbonique; Carbonica; Kohlendioxyd; Kohlensaure; UN 1013; UN 1845; UN 2187; Cardice; Dricold; Drikold; Carbonic acid anhydride; Khladon 744; R 744
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Reaction thermochemistry data: reactions 51 to 100, reactions 101 to 143
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -393.51 ± 0.13 | kJ/mol | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
ΔfH°gas | -393.52 | kJ/mol | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 213.785 ± 0.010 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 213.79 | J/mol*K | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1200. | 1200. to 6000. |
---|---|---|
A | 24.99735 | 58.16639 |
B | 55.18696 | 2.720074 |
C | -33.69137 | -0.492289 |
D | 7.948387 | 0.038844 |
E | -0.136638 | -6.447293 |
F | -403.6075 | -425.9186 |
G | 228.2431 | 263.6125 |
H | -393.5224 | -393.5224 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in September, 1965 | Data last reviewed in September, 1965 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Ttriple | 216.58 | K | N/A | Marsh, 1987 | Uncertainty assigned by TRC = 0.008 K; recommended as fixed point for thermometery; TRC |
Ttriple | 216.58 | K | N/A | Angus, Armstrong, et al., 1976 | Uncertainty assigned by TRC = 0.03 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 5.185 | bar | N/A | Angus, Armstrong, et al., 1976 | Uncertainty assigned by TRC = 0.005 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 304.18 | K | N/A | Suehiro, Nakajima, et al., 1996 | Uncertainty assigned by TRC = 0.04 K; TRC |
Tc | 304.1 | K | N/A | Weber, 1989 | Uncertainty assigned by TRC = 0.1 K; TRC |
Tc | 304.35 | K | N/A | Li and Kiran, 1988 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tc | 304.200 | K | N/A | Morrison, 1981 | Uncertainty assigned by TRC = 0.02 K; TRC |
Tc | 304.23 | K | N/A | Efremova and Shvarts, 1972 | Visual, agreement with literature evidence of sample purity; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 73.80 | bar | N/A | Suehiro, Nakajima, et al., 1996 | Uncertainty assigned by TRC = 0.15 bar; TRC |
Pc | 73.40 | bar | N/A | Li and Kiran, 1988 | Uncertainty assigned by TRC = 0.50 bar; TRC |
Pc | 73.825 | bar | N/A | Angus, Armstrong, et al., 1976 | Uncertainty assigned by TRC = 0.005 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.0919 | l/mol | N/A | Li and Kiran, 1988 | Uncertainty assigned by TRC = 0.001 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 10.6 | mol/l | N/A | Suehiro, Nakajima, et al., 1996 | Uncertainty assigned by TRC = 0.05 mol/l; TRC |
ρc | 10.590 | mol/l | N/A | Angus, Armstrong, et al., 1976 | Uncertainty assigned by TRC = 0.007 mol/l; TRC |
ρc | 10.8 | mol/l | N/A | Andrizhievskii and Chernova, 1970 | Uncertainty assigned by TRC = 0.2 mol/l; TRC |
ρc | 10.64 | mol/l | N/A | Lowry and Erickson, 1927 | Uncertainty assigned by TRC = 0.034 mol/l; from a plot of (DN(liq) + DN(g))/2 based on exp. measurement and extrapolated to 31.0 deg C; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
16.7 | 288. | A | Stephenson and Malanowski, 1987 | Based on data from 273. to 304. K.; AC |
16.4 | 258. | A | Stephenson and Malanowski, 1987 | Based on data from 216. to 273. K.; AC |
16.5 | 282. | N/A | Boublík and Aim, 1972 | Based on data from 267. to 303. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
154.26 to 195.89 | 6.81228 | 1301.679 | -3.494 | Giauque and Egan, 1937 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
26.1 | 207. | A | Stephenson and Malanowski, 1987 | Based on data from 198. to 216. K.; AC |
27.2 ± 0.4 | 70. to 102. | LE | Bryson, Cazcarra, et al., 1974 | AC |
25.9 | 188. | N/A | Ambrose, 1956 | Based on data from 179. to 198. K.; AC |
26.3 | 167. | A | Stull, 1947 | Based on data from 139. to 195. K.; AC |
25.2 | 195. | N/A | Giauque and Egan, 1937, 2 | Based on data from 154. to 196. K.; AC |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: O2+ + CO2 = (O2+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. ± 4. | kJ/mol | AVG | N/A | Average of 4 out of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 73.2 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrS° | 79.1 | J/mol*K | DT | Illies, 1988 | gas phase; ΔrH(0 K)=41.0 kJ/mol; M |
ΔrS° | 86.6 | J/mol*K | N/A | Dotan, Davidson, et al., 1978 | gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970; M |
ΔrS° | 84. | J/mol*K | N/A | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18. | kJ/mol | DT | Rakshit and Warneck, 1981 | gas phase; M |
ΔrG° | 18. | kJ/mol | FA | Dotan, Davidson, et al., 1978 | gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
39. | 600. | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M |
By formula: CO2+ + CO2 = (CO2+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66. ± 4. | kJ/mol | AVG | N/A | Average of 7 out of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrS° | 77.8 | J/mol*K | DT | Illies, 1988 | gas phase; ΔrH(0 K)=66.5 kJ/mol; M |
ΔrS° | 81.6 | J/mol*K | DT | Van Koppen, Kemper, et al., 1983 | gas phase; M |
ΔrS° | 95.4 | J/mol*K | PHPMS | Headley, Mason, et al., 1982 | gas phase; M |
ΔrS° | 88.3 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: O- + CO2 = (O- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 200. ± 50. | kJ/mol | AVG | N/A | Average of 8 out of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 201. ± 21. | kJ/mol | IMRE | Adams and Bohme, 1970 | gas phase; O3- + CO2 <=> CO3- + O2; B |
By formula: I- + CO2 = (I- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 7.5 | kJ/mol | N/A | Piani, Becucci, et al., 2008 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
ΔrH° | 17. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 20. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
ΔrH° | 13.4 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 23.4 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 56.1 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
ΔrS° | 76.1 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrG° | 3.3 ± 0.42 | kJ/mol | TDAs | Banic and Iribarne, 1985 | gas phase; B,M |
ΔrG° | 1.7 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: O2- + CO2 = (O2- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.50 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
ΔrH° | 74.1 ± 7.5 | kJ/mol | IMRE | Pack and Phelps, 1966 | gas phase; Corrected with more recent EA(O2) = 0.45 eV; B,M |
ΔrH° | 106. ± 19. | kJ/mol | PDis | Vestal and Mauclaire, 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 101. | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
ΔrS° | 88. | J/mol*K | DT | Pack and Phelps, 1966 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 49.0 ± 8.4 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
ΔrG° | 51.0 ± 5.0 | kJ/mol | IMRE | Pack and Phelps, 1966 | gas phase; Corrected with more recent EA(O2) = 0.45 eV; B |
ΔrG° | 41.8 | kJ/mol | FA | Adams and Bohme, 1970 | gas phase; switching reaction(O2-)O2; Conway and Nesbit, 1968; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54.0 | 296. | FA | Fehsenfeld and Ferguson, 1974 | gas phase; switching reaction(O2-)H2O; Arshadi and Kebarle, 1970; M |
By formula: F- + CO2 = (F- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 134.2 | kJ/mol | N/A | Arnold, Bradforth, et al., 1995, 2 | gas phase; B |
ΔrH° | 135. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
ΔrH° | 133. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
ΔrH° | 138. ± 13. | kJ/mol | IMRE | McMahon and Northcott, 1978 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 112. | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
ΔrS° | 100. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 102. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrG° | 103. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
ΔrG° | 48.5 | kJ/mol | FA | Spears and Ferguson, 1973 | gas phase; DG>; M |
By formula: Cl- + CO2 = (Cl- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.5 ± 2.1 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995, 2 | gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B |
ΔrH° | 31.8 | kJ/mol | TDEq | Hiraoka, Shoda, et al., 1986 | gas phase; B,M |
ΔrH° | 33.5 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrS° | 82.0 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.79 | kJ/mol | TDEq | Hiraoka, Shoda, et al., 1986 | gas phase; B |
ΔrG° | 8.79 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (I- • 2CO2) + CO2 = (I- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.20 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 19. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.0 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (I- • 4CO2) + CO2 = (I- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.11 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 13. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -5.9 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (I- • CO2) + CO2 = (I- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 20. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
ΔrH° | 10.9 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.4 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (I- • 5CO2) + CO2 = (I- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 7.53 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 18. | kJ/mol | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79. | J/mol*K | N/A | Hiraoka, Mizuse, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
By formula: (Na+ • CO2) + H2O = (Na+ • H2O • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 86.6 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M |
ΔrH° | 95.8 | kJ/mol | FA | Perry, Rowe, et al., 1980 | gas phase; From thermochemical cycle(Na+) 2H2O; Dzidic and Kebarle, 1970, Peterson, Mark, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 106. | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M |
ΔrS° | 107. | J/mol*K | FA | Perry, Rowe, et al., 1980 | gas phase; From thermochemical cycle(Na+) 2H2O; Dzidic and Kebarle, 1970, Peterson, Mark, et al., 1984; M |
By formula: CHO2+ + CO2 = (CHO2+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82.8 | kJ/mol | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrH° | 75.3 | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrH° | 79.9 | kJ/mol | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrH° | 84.1 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 111. | J/mol*K | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrS° | 92.9 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrS° | 113. | J/mol*K | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrS° | 101. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (I- • 3CO2) + CO2 = (I- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.53 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 19. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -4.2 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: NO2- + CO2 = (NO2- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.5 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
ΔrH° | 38.9 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.0 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
ΔrS° | 101. | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.8 ± 8.4 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
ΔrG° | 8.37 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: NO- + CO2 = (NO- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. ± 1. | kJ/mol | DT | Illies, 1988 | gas phase; ΔrH(0 K)=36.0 kJ/mol; M |
ΔrH° | 32. ± 2. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
ΔrH° | 57.7 | kJ/mol | FA | Dunkin, Fehsenfeld, et al., 1971 | gas phase; switching reaction(NO+)NO, ΔrH<; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 75.3 | J/mol*K | DT | Illies, 1988 | gas phase; ΔrH(0 K)=36.0 kJ/mol; M |
ΔrS° | 57.3 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (Br- • CO2) + CO2 = (Br- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 25. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (CO2+ • CO2) + CO2 = (CO2+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrH° | 35. | kJ/mol | EI | Cameron, Aitken, et al., 1994 | gas phase; M |
ΔrH° | 14. | kJ/mol | PI | Linn and Ng, 1981 | gas phase; M |
ΔrH° | 25. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 59.0 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: Br- + CO2 = (Br- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995, 2 | gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B |
ΔrH° | 28. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.0 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.5 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (Cl- • 2CO2) + CO2 = (Cl- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrH° | 28.5 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.7 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.4 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrG° | 0.42 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; B |
By formula: (Cl- • CO2) + CO2 = (Cl- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrH° | 30.1 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 87.0 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -5.9 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrG° | 4.18 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; B |
By formula: H3O+ + CO2 = (H3O+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.8 | kJ/mol | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrH° | 64.0 | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrH° | 60.2 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.7 | J/mol*K | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrS° | 86.6 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (Na+ • 2H2O • CO2) + H2O = (Na+ • 3H2O • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.9 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 23. | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M |
By formula: (O2+ • CO2) + CO2 = (O2+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. ± 2. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrH° | 31. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrS° | 63. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change is questionable; M |
By formula: (Na+ • 3H2O) + CO2 = (Na+ • CO2 • 3H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -1. | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: (Na+ • 3CO2) + CO2 = (Na+ • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35. | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3. | 310. | HPMS | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: Na+ + CO2 = (Na+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.5 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
ΔrH° | 57.3 | kJ/mol | FA | Perry, Rowe, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.1 | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
ΔrS° | 82.8 | J/mol*K | FA | Perry, Rowe, et al., 1980 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28. | 310. | DT | Keller and Beyer, 1971 | gas phase; low E/N; M |
By formula: (I- • 6CO2) + CO2 = (I- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 7.95 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
By formula: (I- • 7CO2) + CO2 = (I- • 8CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 7.95 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
By formula: (Cl- • 3CO2) + CO2 = (Cl- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.8 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; entropy estimated.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3.3 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; entropy estimated.; B |
By formula: CO3- + CO2 = C2O5-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.7 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
ΔrH° | 29.7 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.2 ± 8.4 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
ΔrG° | 2.5 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: HO- + CO2 = (HO- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 213. ± 10. | kJ/mol | CIDT | Squires, 1992 | gas phase; Dissociative protonation threshold at nPrSH, 9 kcal> calc. CIDC(HOCO2-..HSH) = 7:1 HOCO2-; B |
ΔrH° | 366.5 | kJ/mol | Endo | Hierl and Paulson, 1984 | gas phase; Implies ΔHacid = 291.4, anion appears too stable - JEB; B |
By formula: (CO2+ • 2CO2) + CO2 = (CO2+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. | kJ/mol | EI | Cameron, Aitken, et al., 1994 | gas phase; M |
ΔrH° | 21. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrH° | 12. | kJ/mol | PI | Linn and Ng, 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (Na+ • H2O • CO2) + H2O = (Na+ • 2H2O • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.8 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 98.7 | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M |
By formula: (F- • 3CO2) + CO2 = (F- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.9 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -0.8 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (F- • 4CO2) + CO2 = (F- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -4.2 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (F- • 5CO2) + CO2 = (F- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -5.9 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: C7O15- + 7CO2 = C8O17-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; Estimated entropy; single temperature measurement; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -8.8 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: (F- • 2CO2) + CO2 = (F- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.6 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (F- • CO2) + CO2 = (F- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.9 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (O2- • 2CO2) + CO2 = (O2- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.2 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 3CO2) + CO2 = (O2- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 4CO2) + CO2 = (O2- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.0 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -4.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 5CO2) + CO2 = (O2- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -6.3 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 6CO2) + CO2 = (O2- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 80.8 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.5 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • CO2) + CO2 = (O2- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.6 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 2CO2) + CO2 = (NO2- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 3CO2) + CO2 = (NO2- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 108. | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.1 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 4CO2) + CO2 = (NO2- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.5 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 5CO2) + CO2 = (NO2- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.7 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -8.4 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.035 | 2400. | L | N/A | |
0.034 | 2600. | Q | N/A | Only the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical. |
0.045 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.035 | 2300. | L | N/A | |
0.034 | 2400. | C | N/A | |
0.034 | 2400. | C | N/A | |
0.034 | 2400. | C | N/A | |
0.031 | 2400. | T | N/A | |
0.034 | 2400. | Q | N/A | missing citation refer to several references in their list of Henry's law constants but they don't assign them to specific species. |
0.034 | N/A | N/A | ||
0.034 | C | N/A | ||
0.032 | 2400. | X | N/A | |
0.035 | 2400. | L | N/A | |
0.034 | 2400. | L | N/A | |
0.034 | 2400. | X | N/A | The value is taken from the compilation of solubilities by W. Asman (unpublished). |
0.034 | 2700. | X | N/A | The value is taken from the compilation of solubilities by W. Asman (unpublished). |
0.034 | 2400. | N/A | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 13.777 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 540.5 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 515.8 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
-0.599986 | EIAE | Knapp, Echt, et al., 1986 | Unbound but in -0.3 eV well, from (CO2)n; B |
-1.60 ± 0.10 | NBIE | Compton, Reinhardt, et al., 1975 | B |
Ionization energy determinations
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C+ | 25. ± 2. | O2 | PI | Hitchcock, Brion, et al., 1980 | LLK |
C+ | 22.7 ± 0.2 | O2 | EI | Bussieres and Marmet, 1977 | LLK |
C+ | 27.8 ± 0.1 | 2O | EI | Bussieres and Marmet, 1977 | LLK |
C+ | 24.6 ± 1.0 | O2 | EI | Crowe and McConkey, 1974 | LLK |
C+ | 28.4 ± 0.6 | 2O | EI | Cuthbert, Farren, et al., 1968 | RDSH |
C+ | 14.2 ± 0.5 | 2O | EI | Cuthbert, Farren, et al., 1968 | RDSH |
C+ | 23.2 ± 0.5 | O2 | EI | Cuthbert, Farren, et al., 1968 | RDSH |
CO+ | 19. ± 2. | O | PI | Hitchcock, Brion, et al., 1980 | LLK |
CO+ | 19.466 | O | PE | Eland and Berkowitz, 1977, 2 | LLK |
CO+ | 19.42 ± 0.075 | O | EI | Bussieres and Marmet, 1977 | LLK |
CO+ | 19.466 | O | PE | Kronebusch and Berkowitz, 1976 | LLK |
CO+ | 20.9 ± 1.0 | O | EI | Crowe and McConkey, 1974 | LLK |
CO+ | 29.0 | O | PI | Samson and Gardner, 1973 | LLK |
O+ | 19. ± 1. | CO | PI | Hitchcock, Brion, et al., 1980 | LLK |
O+ | 19.071 | CO | PE | Eland and Berkowitz, 1977, 2 | LLK |
O+ | 19.05 ± 0.05 | CO | EI | Bussieres and Marmet, 1977 | LLK |
O+ | 19.067 | CO | PE | Kronebusch and Berkowitz, 1976 | LLK |
O+ | 19.393 ± 0.008 | ? | PI | Parr and Taylor, 1974 | LLK |
O+ | 22.6 ± 1.0 | CO | EI | Crowe and McConkey, 1974 | LLK |
O+ | 19.10 ± 0.01 | CO | PI | Dibeler and Walker, 1967 | RDSH |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Br- + CO2 = (Br- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995, 2 | gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B |
ΔrH° | 28. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.0 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.5 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (Br- • CO2) + CO2 = (Br- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 25. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (Br- • 2CO2) + CO2 = (Br- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 3CO2) + CO2 = (Br- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 4CO2) + CO2 = (Br- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 5CO2) + CO2 = (Br- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 6CO2) + CO2 = (Br- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 7CO2) + CO2 = (Br- • 8CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 8CO2) + CO2 = (Br- • 9CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.5 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 9CO2) + CO2 = (Br- • 10CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.5 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 10CO2) + CO2 = (Br- • 11CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: CHO+ + CO2 = (CHO+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.7 | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 89.5 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
By formula: (CHO+ • CO2) + CO2 = (CHO+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.4 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
By formula: (CHO+ • 2CO2) + CO2 = (CHO+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.0 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
By formula: (CHO+ • 3CO2) + CO2 = (CHO+ • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35. | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: CHO2+ + CO2 = (CHO2+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82.8 | kJ/mol | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrH° | 75.3 | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrH° | 79.9 | kJ/mol | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrH° | 84.1 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 111. | J/mol*K | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrS° | 92.9 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrS° | 113. | J/mol*K | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrS° | 101. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (CHO2+ • CO2) + CO2 = (CHO2+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.2 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
By formula: (CHO2+ • 2CO2) + CO2 = (CHO2+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: (CHO2- • 4294967295CO2) + CO2 = CHO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 216. ± 9.6 | kJ/mol | N/A | Caldwell, Renneboog, et al., 1989 | gas phase; B |
By formula: CH3+ + CO2 = (CH3+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 207. | kJ/mol | PHPMS | McMahon, Heinis, et al., 1988 | gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M |
By formula: CH6N+ + CO2 = (CH6N+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.2 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 89.5 | J/mol*K | PHPMS | Meot-Ner (Mautner), 1978 | gas phase; M |
By formula: CN- + CO2 = (CN- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.4 ± 3.3 | kJ/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 132. | J/mol*K | PHPMS | Larson, Szulejko, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 33.1 ± 0.84 | kJ/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B |
By formula: CO2+ + CO2 = (CO2+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66. ± 4. | kJ/mol | AVG | N/A | Average of 7 out of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrS° | 77.8 | J/mol*K | DT | Illies, 1988 | gas phase; ΔrH(0 K)=66.5 kJ/mol; M |
ΔrS° | 81.6 | J/mol*K | DT | Van Koppen, Kemper, et al., 1983 | gas phase; M |
ΔrS° | 95.4 | J/mol*K | PHPMS | Headley, Mason, et al., 1982 | gas phase; M |
ΔrS° | 88.3 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (CO2+ • CO2) + CO2 = (CO2+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrH° | 35. | kJ/mol | EI | Cameron, Aitken, et al., 1994 | gas phase; M |
ΔrH° | 14. | kJ/mol | PI | Linn and Ng, 1981 | gas phase; M |
ΔrH° | 25. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 59.0 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (CO2+ • 2CO2) + CO2 = (CO2+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. | kJ/mol | EI | Cameron, Aitken, et al., 1994 | gas phase; M |
ΔrH° | 21. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrH° | 12. | kJ/mol | PI | Linn and Ng, 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (CO2+ • 3CO2) + CO2 = (CO2+ • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (CO2+ • 4CO2) + CO2 = (CO2+ • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (CO2+ • 5CO2) + CO2 = (CO2+ • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | N/A | Hiraoka, Nakajima, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
By formula: CO3- + CO2 = C2O5-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.7 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
ΔrH° | 29.7 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.2 ± 8.4 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
ΔrG° | 2.5 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: CO3- + CO2 = (CO3- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.9 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 68.2 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO3- • CO2) + CO2 = (CO3- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 74.9 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO3- • 2CO2) + CO2 = (CO3- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.6 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO3- • 3CO2) + CO2 = (CO3- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.8 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO3- • 4CO2) + CO2 = (CO3- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.1 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.0 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO3- • 5CO2) + CO2 = (CO3- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.5 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.6 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO3- • 6CO2) + CO2 = (CO3- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.6 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | N/A | Hiraoka and Yamabe, 1992 | gas phase; Entropy change calculated or estimated; M |
By formula: (C2H2O2- • 4294967295CO2) + CO2 = C2H2O2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 258. ± 11. | kJ/mol | CIDT | Wenthold and Squires, 1994 | gas phase; B |
By formula: (C2H3O2- • 4294967295CO2) + CO2 = C2H3O2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 250. ± 10. | kJ/mol | CIDC | Wenthold and Squires, 1994 | gas phase; B |
By formula: C2H8N+ + CO2 = (C2H8N+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.9 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 87.0 | J/mol*K | PHPMS | Meot-Ner (Mautner), 1978 | gas phase; M |
By formula: C2O5- + 2CO2 = C3O7-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: C3O7- + 3CO2 = C4O9-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -4.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: C4O9- + 4CO2 = C5O11-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -6.3 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: C5O11- + 5CO2 = C6O13-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.5 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: C6O13- + 6CO2 = C7O15-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.9 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: C7O15- + 7CO2 = C8O17-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; Estimated entropy; single temperature measurement; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -8.8 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; Estimated entropy; single temperature measurement; B |
(Ca+2 • 4 • ) + = (Ca+2 • 5 • )
By formula: (Ca+2 • 4CO2 • CCaO3) + CO2 = (Ca+2 • 5CO2 • CCaO3)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
32. | 296. | FA | Spears and Fehsenfeld, 1972 | gas phase; M |
By formula: (Ca+2 • 5CO2) + CO2 = (Ca+2 • 6CO2)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
34. | 296. | FA | Spears and Fehsenfeld, 1972 | gas phase; M |
By formula: Cl- + CO2 = (Cl- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.5 ± 2.1 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995, 2 | gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B |
ΔrH° | 31.8 | kJ/mol | TDEq | Hiraoka, Shoda, et al., 1986 | gas phase; B,M |
ΔrH° | 33.5 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrS° | 82.0 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.79 | kJ/mol | TDEq | Hiraoka, Shoda, et al., 1986 | gas phase; B |
ΔrG° | 8.79 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (Cl- • CO2) + CO2 = (Cl- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrH° | 30.1 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 87.0 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -5.9 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrG° | 4.18 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; B |
By formula: (Cl- • 2CO2) + CO2 = (Cl- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrH° | 28.5 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.7 | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.4 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrG° | 0.42 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; B |
By formula: (Cl- • 3CO2) + CO2 = (Cl- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.8 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; entropy estimated.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3.3 | kJ/mol | TDAs | Hiraoka, Shoda, et al., 1986 | gas phase; entropy estimated.; B |
By formula: Cs+ + CO2 = (Cs+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | DT | McKnight and Sawina, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 59.8 | J/mol*K | DT | McKnight and Sawina, 1972 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10. | 301. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (Cs+ • H2O) + CO2 = (Cs+ • CO2 • H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.0 | 301. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: F- + CO2 = (F- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 134.2 | kJ/mol | N/A | Arnold, Bradforth, et al., 1995, 2 | gas phase; B |
ΔrH° | 135. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
ΔrH° | 133. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
ΔrH° | 138. ± 13. | kJ/mol | IMRE | McMahon and Northcott, 1978 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 112. | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
ΔrS° | 100. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 102. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrG° | 103. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
ΔrG° | 48.5 | kJ/mol | FA | Spears and Ferguson, 1973 | gas phase; DG>; M |
By formula: (F- • CO2) + CO2 = (F- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.9 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (F- • 2CO2) + CO2 = (F- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.6 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (F- • 3CO2) + CO2 = (F- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.9 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -0.8 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (F- • 4CO2) + CO2 = (F- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -4.2 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (F- • 5CO2) + CO2 = (F- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -5.9 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (F- • 6CO2) + CO2 = (F- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16. | kJ/mol | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 75. | J/mol*K | N/A | Hiraoka, Mizuse, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
By formula: Fe+ + CO2 = (Fe+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.8 ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: HO- + CO2 = (HO- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 213. ± 10. | kJ/mol | CIDT | Squires, 1992 | gas phase; Dissociative protonation threshold at nPrSH, 9 kcal> calc. CIDC(HOCO2-..HSH) = 7:1 HOCO2-; B |
ΔrH° | 366.5 | kJ/mol | Endo | Hierl and Paulson, 1984 | gas phase; Implies ΔHacid = 291.4, anion appears too stable - JEB; B |
By formula: HO- + CO2 = (HO- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 370. | kJ/mol | CID | Hierl and Paulson, 1984 | gas phase; M |
By formula: H3O+ + CO2 = (H3O+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.8 | kJ/mol | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrH° | 64.0 | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrH° | 60.2 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.7 | J/mol*K | PHPMS | Szulejko and McMahon, 1992 | gas phase; M |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
ΔrS° | 86.6 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; M |
By formula: (H3O+ • CO2) + CO2 = (H3O+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.9 | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 111. | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
By formula: (H3O+ • 2CO2) + CO2 = (H3O+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.9 | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
By formula: H4N+ + CO2 = (H4N+ • CO2)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
9.6 | 296. | FA | Spears and Fehsenfeld, 1972 | gas phase; M |
By formula: (H4N+ • 2H2O) + CO2 = (H4N+ • CO2 • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.4 | kJ/mol | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: I- + CO2 = (I- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 7.5 | kJ/mol | N/A | Piani, Becucci, et al., 2008 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
ΔrH° | 17. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 20. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
ΔrH° | 13.4 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 23.4 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 56.1 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
ΔrS° | 76.1 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
ΔrG° | 3.3 ± 0.42 | kJ/mol | TDAs | Banic and Iribarne, 1985 | gas phase; B,M |
ΔrG° | 1.7 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (I- • CO2) + CO2 = (I- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 20. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
ΔrH° | 10.9 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.4 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (I- • 2CO2) + CO2 = (I- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.20 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 19. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.0 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (I- • 3CO2) + CO2 = (I- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.53 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 19. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -4.2 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (I- • 4CO2) + CO2 = (I- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.11 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 13. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -5.9 ± 8.4 | kJ/mol | TDAs | Hiraoka, Mizuse, et al., 1987 | gas phase; B |
By formula: (I- • 5CO2) + CO2 = (I- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 7.53 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
ΔrH° | 18. | kJ/mol | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79. | J/mol*K | N/A | Hiraoka, Mizuse, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
By formula: (I- • 6CO2) + CO2 = (I- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 7.95 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
By formula: (I- • 7CO2) + CO2 = (I- • 8CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
ΔrH° | 7.95 | kJ/mol | N/A | Gomez, Taylor, et al., 2002 | gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B |
By formula: (I- • 8CO2) + CO2 = (I- • 9CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (I- • 9CO2) + CO2 = (I- • 10CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (I- • 10CO2) + CO2 = (I- • 11CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.2 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (I- • 11CO2) + CO2 = (I- • 12CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.7 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (I- • 12CO2) + CO2 = (I- • 13CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.6 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: K+ + CO2 = (K+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. | kJ/mol | HPMS | Castleman and Keesee, 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 63.6 | J/mol*K | HPMS | Castleman and Keesee, 1981 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 310. | DT | Keller and Beyer, 1971, 2 | gas phase; low E/N; M |
By formula: Kr+ + CO2 = (Kr+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79. ± 3. | kJ/mol | SIFT | Praxmarer, Jordan, et al., 1993 | gas phase; switching reaction(Kr+)Kr; Wadt, 1978, Radzig and Smirnov, 1985; M |
By formula: Mg+ + CO2 = (Mg+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 57.7 ± 5.9 | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: (Mg+ • CO2) + CO2 = (Mg+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48. ± 3. | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: (Mg+ • 2CO2) + CO2 = (Mg+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.4 ± 5.9 | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: NO- + CO2 = (NO- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. ± 1. | kJ/mol | DT | Illies, 1988 | gas phase; ΔrH(0 K)=36.0 kJ/mol; M |
ΔrH° | 32. ± 2. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
ΔrH° | 57.7 | kJ/mol | FA | Dunkin, Fehsenfeld, et al., 1971 | gas phase; switching reaction(NO+)NO, ΔrH<; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 75.3 | J/mol*K | DT | Illies, 1988 | gas phase; ΔrH(0 K)=36.0 kJ/mol; M |
ΔrS° | 57.3 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • CO2) + CO2 = (NO- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31. ± 2. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • 2CO2) + CO2 = (NO- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. ± 2. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.4 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • 3CO2) + CO2 = (NO- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. ± 1. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.9 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • 4CO2) + CO2 = (NO- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 1. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • 5CO2) + CO2 = (NO- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Hiraoka and Yamabe, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: NO2- + CO2 = (NO2- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.5 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
ΔrH° | 38.9 ± 0.42 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.0 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
ΔrS° | 101. | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.8 ± 8.4 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
ΔrG° | 8.37 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (NO2- • CO2) + CO2 = (NO2- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.2 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 2CO2) + CO2 = (NO2- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 3CO2) + CO2 = (NO2- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 108. | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.1 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 4CO2) + CO2 = (NO2- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.5 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 5CO2) + CO2 = (NO2- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.7 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -8.4 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 6CO2) + CO2 = (NO2- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -8.8 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 7CO2) + CO2 = (NO2- • 8CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -9.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: NO3- + CO2 = (NO3- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 11.3 ± 0.42 | kJ/mol | TDAs | Banic and Iribarne, 1985 | gas phase; B,M |
By formula: Na+ + CO2 = (Na+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.5 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
ΔrH° | 57.3 | kJ/mol | FA | Perry, Rowe, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.1 | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
ΔrS° | 82.8 | J/mol*K | FA | Perry, Rowe, et al., 1980 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28. | 310. | DT | Keller and Beyer, 1971 | gas phase; low E/N; M |
By formula: (Na+ • CO2) + CO2 = (Na+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.0 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
20. | 310. | DT | Keller and Beyer, 1971 | gas phase; low E/N; M |
By formula: (Na+ • 2CO2) + CO2 = (Na+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
By formula: (Na+ • 3CO2) + CO2 = (Na+ • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35. | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3. | 310. | HPMS | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: (Na+ • H2O) + CO2 = (Na+ • CO2 • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.7 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
By formula: (Na+ • 2H2O) + CO2 = (Na+ • CO2 • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.1 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
By formula: (Na+ • 3H2O) + CO2 = (Na+ • CO2 • 3H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -1. | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: O- + CO2 = (O- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 200. ± 50. | kJ/mol | AVG | N/A | Average of 8 out of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 201. ± 21. | kJ/mol | IMRE | Adams and Bohme, 1970 | gas phase; O3- + CO2 <=> CO3- + O2; B |
By formula: (O- • CO2) + CO2 = (O- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. | kJ/mol | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.2 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
By formula: (O- • H2O) + CO2 = (O- • CO2 • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 152. | kJ/mol | PDiss | Roehl, Snodgrass, et al., 1991 | gas phase; ΔrH>; M |
By formula: O2+ + CO2 = (O2+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. ± 4. | kJ/mol | AVG | N/A | Average of 4 out of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 73.2 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrS° | 79.1 | J/mol*K | DT | Illies, 1988 | gas phase; ΔrH(0 K)=41.0 kJ/mol; M |
ΔrS° | 86.6 | J/mol*K | N/A | Dotan, Davidson, et al., 1978 | gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970; M |
ΔrS° | 84. | J/mol*K | N/A | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18. | kJ/mol | DT | Rakshit and Warneck, 1981 | gas phase; M |
ΔrG° | 18. | kJ/mol | FA | Dotan, Davidson, et al., 1978 | gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
39. | 600. | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M |
By formula: (O2+ • CO2) + CO2 = (O2+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. ± 2. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrH° | 31. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
ΔrS° | 63. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1977 | gas phase; Entropy change is questionable; M |
By formula: (O2+ • 2CO2) + CO2 = (O2+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.8 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (O2+ • 3CO2) + CO2 = (O2+ • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.0 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (O2+ • 4CO2) + CO2 = (O2+ • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 2. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 83.7 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (O2+ • 5CO2) + CO2 = (O2+ • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Hiraoka, Nakajima, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
By formula: O2- + CO2 = (O2- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.50 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
ΔrH° | 74.1 ± 7.5 | kJ/mol | IMRE | Pack and Phelps, 1966 | gas phase; Corrected with more recent EA(O2) = 0.45 eV; B,M |
ΔrH° | 106. ± 19. | kJ/mol | PDis | Vestal and Mauclaire, 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 101. | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
ΔrS° | 88. | J/mol*K | DT | Pack and Phelps, 1966 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 49.0 ± 8.4 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
ΔrG° | 51.0 ± 5.0 | kJ/mol | IMRE | Pack and Phelps, 1966 | gas phase; Corrected with more recent EA(O2) = 0.45 eV; B |
ΔrG° | 41.8 | kJ/mol | FA | Adams and Bohme, 1970 | gas phase; switching reaction(O2-)O2; Conway and Nesbit, 1968; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54.0 | 296. | FA | Fehsenfeld and Ferguson, 1974 | gas phase; switching reaction(O2-)H2O; Arshadi and Kebarle, 1970; M |
By formula: (O2- • CO2) + CO2 = (O2- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.6 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 2CO2) + CO2 = (O2- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.2 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 3CO2) + CO2 = (O2- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 4CO2) + CO2 = (O2- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.0 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -4.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 5CO2) + CO2 = (O2- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -6.3 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 6CO2) + CO2 = (O2- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 80.8 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.5 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • H2O) + CO2 = (O2- • CO2 • H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
34. | 296. | FA | Fehsenfeld and Ferguson, 1974 | gas phase; switching reaction(O2-)2H2O; Arshadi and Kebarle, 1970; M |
By formula: O2S+ + CO2 = (O2S+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. ± 0.8 | kJ/mol | DT | Illies, 1988 | gas phase; ΔrH(0 K)=42.7 kJ/mol; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.0 | J/mol*K | DT | Illies, 1988 | gas phase; ΔrH(0 K)=42.7 kJ/mol; M |
By formula: O3S- + CO2 = (O3S- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.2 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 86.6 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.3 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Gas Chromatography, Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 69 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | Squalane | 27. | 154. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 49. | 153. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 67. | 152. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 86. | 152. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Marsh, 1987
Marsh, K.N.,
Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell Sci. Pub., Oxford, 1987. [all data]
Angus, Armstrong, et al., 1976
Angus, S.; Armstrong, B.; de Reuck, K.M.,
International Thermodynamic Tables of the Fluid State - 3 Carbon Dioxide, Pergamon, New York, 1976. [all data]
Suehiro, Nakajima, et al., 1996
Suehiro, Y.; Nakajima, M.; Yamada, K.; Uematsu, M.,
Critical parameters of {xCO2 + (1 - x)CHF3} for x = (1.0000, 0.7496, 0.5013 , and 0.2522),
J. Chem. Thermodyn., 1996, 28, 1153-1164. [all data]
Weber, 1989
Weber, L.A.,
Simple Apparatus for Vapor-Liquid Equilibrium Measurements with Data for the Binary Systems of Carbon Dioxide with n-Butane and Isobutane,
J. Chem. Eng. Data, 1989, 34, 171. [all data]
Li and Kiran, 1988
Li, L.; Kiran, E.,
Gas-Liquid Critical Properties of Methylamine + Nitrous Oxide and Methylamine + Ethylene Binary Mixtures,
J. Chem. Eng. Data, 1988, 33, 342. [all data]
Morrison, 1981
Morrison, G.,
Effect of water on the critical points of carbon dioxide and ethane,
J. Phys. Chem., 1981, 85, 759-61. [all data]
Efremova and Shvarts, 1972
Efremova, G.D.; Shvarts, A.V.,
Higher-order Critical Phenomena in Ternary Systems. The Methanol-Carbon Dioxide-Ethane System,
Russ. J. Phys. Chem. (Engl. Transl.), 1972, 46, 237-239. [all data]
Andrizhievskii and Chernova, 1970
Andrizhievskii, A.A.; Chernova, N.I.,
Application of the Moving Meniscus Method in the Study of the Critical Phenomena in One-component Systems,
Russ. J. Phys. Chem. (Engl. Transl.), 1970, 44, 1519. [all data]
Lowry and Erickson, 1927
Lowry, H.H.; Erickson, W.R.,
The Densities of Coexisting Liquid and Gaseous Carbon Dioxide and the Solubility of Water in Liquid Carbon Dioxide.,
J. Am. Chem. Soc., 1927, 49, 2729-2734. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Boublík and Aim, 1972
Boublík, T.; Aim, K.,
Heats of vaporization of simple non-spherical molecule compounds,
Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513
. [all data]
Giauque and Egan, 1937
Giauque, W.F.; Egan, C.J.,
Carbon Dioxide. The Heat Capacity and Vapor Pressure of the Solid. The Heat of Sublimation. Thermodynamic and Spectroscopic Values of the Entropy,
J. Chem. Phys., 1937, 5, 1, 45-54, https://doi.org/10.1063/1.1749929
. [all data]
Bryson, Cazcarra, et al., 1974
Bryson, Charles E.; Cazcarra, Victor; Levenson, Leonard L.,
Sublimation rates and vapor pressures of water, carbon dioxide, nitrous oxide, and xenon,
J. Chem. Eng. Data, 1974, 19, 2, 107-110, https://doi.org/10.1021/je60061a021
. [all data]
Ambrose, 1956
Ambrose, D.,
The vapour pressures and critical temperatures of acetylene and carbon dioxide,
Trans. Faraday Soc., 1956, 52, 772, https://doi.org/10.1039/tf9565200772
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Giauque and Egan, 1937, 2
Giauque, W.F.; Egan, C.J.,
Carbon Dioxide. The Heat Capacity and Vapor Pressure of the Solid. The Heat of Sublimation. Thermodynamic and Spectroscopic Values of the Entropy,
J. Chem. Phys., 1937, 5, 1, 45, https://doi.org/10.1063/1.1749929
. [all data]
Hiraoka, Nakajima, et al., 1988
Hiraoka, K.; Nakajima, G.; Shoda, S.,
Determination of the Stabilities of CO2+(CO2)n and O2+(CO2)n Clusters with n = 1 - 6,
Chem. Phys. Lett., 1988, 146, 6, 535, https://doi.org/10.1016/0009-2614(88)87495-5
. [all data]
Illies, 1988
Illies, A.J.,
Thermochemistry of the Gas - Phase Ion - Molecule Clustering of CO2+CO2, SO2+CO2, N2O+N2O, O2+CO2, NO+CO2 and NO+N2O: Description of a New Hybrid Drift Tube/Ion Source with Coaxial Electron Beam and Ion Exit Apertures,
J. Phys. Chem., 1988, 92, 10, 2889, https://doi.org/10.1021/j100321a037
. [all data]
Dotan, Davidson, et al., 1978
Dotan, I.; Davidson, J.A.; Fehsenfeld, F.C.; Albritton, D.L.,
Reactions of O2+.O2 with CO2, O3 and CH4 and O2+.O3 with H2O and CH4 and their Role in Stratospheric Ion Chemistry,
J. Geophys. Res., 1978, 83, C8, 4036, https://doi.org/10.1029/JC083iC08p04036
. [all data]
Conway and Janik, 1970
Conway, D.C.; Janik, G.S.,
Determination of the Bond Energies for the Series O2 - O2+ through O2 - O10+,
J. Chem. Phys., 1970, 53, 5, 1859, https://doi.org/10.1063/1.1674262
. [all data]
Meot-Ner (Mautner) and Field, 1977
Meot-Ner (Mautner), M.; Field, F.H.,
Proton Affinity and Ion - Molecule Clustering in CO2 and CS2. Applications in Martian Ionospheric Chemistry,
J. Chem. Phys., 1977, 66, 10, 4527, https://doi.org/10.1063/1.433706
. [all data]
Rakshit and Warneck, 1981
Rakshit, A.B.; Warneck, P.,
Formation and Reactions of O2+.CO2, O2+.H2O and O2+(CO2)2 Ions,
Int. J. Mass Spectrom Ion Phys., 1981, 40, 2, 135, https://doi.org/10.1016/0020-7381(81)80037-X
. [all data]
Van Koppen, Kemper, et al., 1983
Van Koppen, P.A.M.; Kemper, P.R.; Illies, A.J.; Bowers, M.T.,
An Improved High - Pressure, Temperature - Variable Ion Source with Coaxial Electron Beam/Ion Exit Slit,
Int. J. Mass Spectrom. Ion Proc., 1983, 54, 3, 263, https://doi.org/10.1016/0168-1176(83)80015-9
. [all data]
Headley, Mason, et al., 1982
Headley, J.V.; Mason, R.S.; Jennings, K.R.,
Kinetics, Equilibria and Diffusion of Ions Produced in N2, CO and CO2, Studied as a Function of Temperature using a High - Pressure Pulsed Mass Spectrometer,
J. Chem. Soc., 1982, 78, 933. [all data]
Adams and Bohme, 1970
Adams, N.G.; Bohme, D.,
Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-,
J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449
. [all data]
Piani, Becucci, et al., 2008
Piani, G.; Becucci, M.; Bowen, M.S.; Oakman, J.; Hu, Q.; Continetti, R.E.,
Photodetachment and dissociation dynamics of microsolvated iodide clusters,
Phys. Scripta, 2008, 78, 5, 058110, https://doi.org/10.1088/0031-8949/78/05/058110
. [all data]
Arnold, Bradforth, et al., 1995
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M.,
Study of I-(CO2)n, Br-(CO2)n, and I-(N2O)n clusters by anion photoelectron spectroscopy,
J. Chem. Phys., 1995, 102, 9, 3510, https://doi.org/10.1063/1.468576
. [all data]
Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S.,
Stability and Structure of Cluster Ions: Halide Ions with CO2,
J. Chem. Phys., 1987, 87, 6, 3647, https://doi.org/10.1063/1.452962
. [all data]
Gomez, Taylor, et al., 2002
Gomez, H.; Taylor, T.R.; Neumark, D.M.,
Anion photoelectron spectroscopy of I-2(-)(CO2)(n)(n=1-8) clusters,
J. Chem. Phys., 2002, 116, 14, 6111-6117, https://doi.org/10.1063/1.1458246
. [all data]
Keesee, Lee, et al., 1980
Keesee, R.G.; Lee, N.; Castleman, A.W., Jr.,
Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions,
J. Chem. Phys., 1980, 73, 2195. [all data]
Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V.,
Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions,
J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543
. [all data]
Hiraoka and Yamabe, 1992
Hiraoka, K.; Yamabe, S.,
Formation of the Chelate Bonds in the Cluster O2(-)(CO2)n, CO3(-)(CO2)n, and NO2(-)(CO2)n,
J. Chem. Phys., 1992, 97, 1, 643, https://doi.org/10.1063/1.463560
. [all data]
Pack and Phelps, 1966
Pack, J.L.; Phelps, A.V.,
Electron Attachment and Detachment . II. Mixtures of O2 and CO2 and of O2 and H2O,
J. Chem. Phys., 1966, 45, 11, 4316, https://doi.org/10.1063/1.1727491
. [all data]
Vestal and Mauclaire, 1977
Vestal, M.L.; Mauclaire, G.H.,
Photodissociaton of negative ions formed in CO2 and CO2/O2 Mixtures,
J. Chem. Phys., 1977, 67, 3758. [all data]
Conway and Nesbit, 1968
Conway, D.C.; Nesbit, L.E.,
Stability of O4-,
J. Chem. Phys., 1968, 48, 1, 509, https://doi.org/10.1063/1.1667956
. [all data]
Fehsenfeld and Ferguson, 1974
Fehsenfeld, F.C.; Ferguson, E.E.,
Laboratory studies of negative ion reactions with atmospheric trace constituents,
J. Chem. Phys., 1974, 61, 3181. [all data]
Arshadi and Kebarle, 1970
Arshadi, M.; Kebarle, P.,
Hydration of OH- and O2- in the Gas Phase. Comparative Solvation of OH- by Water and the Hydrogen Halides. Effect of Acidity,
J. Phys. Chem., 1970, 74, 7, 1483, https://doi.org/10.1021/j100702a015
. [all data]
Arnold, Bradforth, et al., 1995, 2
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M.,
Study of halogen carbon dioxide clusters and the fluoroformyloxyl radical by photodetachment of X(-)(CO2) (X=I,Cl,Br) and FCO2-,
J. Chem. Phys., 1995, 102, 9, 3493, https://doi.org/10.1063/1.468575
. [all data]
Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B.,
Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria,
J. Am. Chem. Soc., 1985, 107, 766. [all data]
McMahon and Northcott, 1978
McMahon, T.B.; Northcott, C.J.,
The Fluoroformate Ion FCO2-: An ICR study of the gas phase lewis acidity of carbon dioxide and related isoelectronic species,
Can. J. Chem., 1978, 56, 1068. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Spears and Ferguson, 1973
Spears, K.G.; Ferguson, E.E.,
Termolecular and Saturated Termolecular Kinetics for Li+ and F-,
J. Chem. Phys., 1973, 59, 8, 4174, https://doi.org/10.1063/1.1680610
. [all data]
Hiraoka, Shoda, et al., 1986
Hiraoka, K.; Shoda, T.; Morise, K.; Yamabe, S.; Kawai, E.; Hirao, K.,
Stability and structure of cluster ions in the gas phase: Carbon dioxide with Cl-, H3O+, HCO2+ and HCO+,
J. Chem. Phys., 1986, 84, 2091. [all data]
Peterson, Mark, et al., 1984
Peterson, K.I.; Mark, T.D.; Keesee, R.G.; Castleman, A.W.,
Thermochemical Properties of Gas - Phase Mixed Clusters: H2O/CO2 with Na+,
J. Phys. Chem., 1984, 88, 13, 2880, https://doi.org/10.1021/j150657a042
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Perry, Rowe, et al., 1980
Perry, R.A.; Rowe, B.R.; Viggiano, A.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C.,
Laboratory Measurements of Stratospheric Sodium Ion Measurements,
Geophys. Res. Lett., 1980, 7, 9, 693, https://doi.org/10.1029/GL007i009p00693
. [all data]
Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B.,
personal communication, 1992. [all data]
Jennings, Headley, et al., 1982
Jennings, K.R.; Headley, J.V.; Mason, R.S.,
The Temperature Dependence of Ion - Molecule Association Reactions,
Int. J. Mass. Spectrom. Ion Phys, 1982, 45, 315. [all data]
Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S.,
Cluster Ions: Gas Phase Stabilities of NO+(O2)n and NO+(CO2)n with n = 1 - 5,
J. Chem. Phys., 1991, 95, 9, 6800, https://doi.org/10.1063/1.461518
. [all data]
Dunkin, Fehsenfeld, et al., 1971
Dunkin, D.B.; Fehsenfeld, F.C.; Schelmetekopf, A.L.; Ferguson, E.E.,
Three-Body Association Reactions of NO+ with O2, N2, and CO2,
J. Chem. Phys., 1971, 54, 9, 3817, https://doi.org/10.1063/1.1675432
. [all data]
Cameron, Aitken, et al., 1994
Cameron, B.R.; Aitken, C.G.; Harland, P.W.,
Appearence Energies of Small Cluster Ions and their Fragments,
J. Chem. Soc. Faraday Trans., 1994, 90, 7, 935, https://doi.org/10.1039/ft9949000935
. [all data]
Linn and Ng, 1981
Linn, S.H.; Ng, C.Y.,
Photoionization Study of CO2, N2O Dimers and Clusters,
J. Chem. Phys., 1981, 75, 10, 4921, https://doi.org/10.1063/1.441931
. [all data]
Keller and Beyer, 1971
Keller, G.E.; Beyer, R.A.,
CO2 and O2 Clustering to Sodium Ions,
J. Geophys. Res., 1971, 74, 1, 289, https://doi.org/10.1029/JA076i001p00289
. [all data]
Squires, 1992
Squires, R.R.,
Gas Phase Thermochemical Properties of the Bicarbonate and Bisulfate Ions,
Int. J. Mass Spectrom. Ion Proc., 1992, 117, 565, https://doi.org/10.1016/0168-1176(92)80114-G
. [all data]
Hierl and Paulson, 1984
Hierl, P.M.; Paulson, J.F.,
Translational energy dependence of cross sections for reactions of OH- (H2O)n with CO2 and SO2,
J. Chem. Phys., 1984, 80, 4890. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Knapp, Echt, et al., 1986
Knapp, A.; Echt, O.; Kreisle, D.; Mark, T.D.; Recknagel, E.,
Formation of Long-Lived CO2-, N2O- and their Dimer Anions, by Electron Attachment to van der Walls Clusters,
Chem. Phys. Lett., 1986, 126, 3-4, 225, https://doi.org/10.1016/S0009-2614(86)80074-4
. [all data]
Compton, Reinhardt, et al., 1975
Compton, R.N.; Reinhardt, P.W.; Cooper, C.D.,
Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities,
J. Chem. Phys., 1975, 63, 3821. [all data]
Wang, Reutt, et al., 1988
Wang, L.; Reutt, J.E.; Lee, Y.T.; Shirley, D.A.,
High resolution UV photoelectron spectroscopy of CO2, COS, and CS2 using supersonic molecular beams,
J. Electron Spectrosc. Relat. Phenom., 1988, 47, 167. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Potts and Fattahallah, 1980
Potts, A.W.; Fattahallah, G.H.,
High-resolution ultraviolet photoelectron spectroscopy of CO2, COS and CS2,
J. Phys. B:, 1980, 13, 2545. [all data]
Hitchcock, Brion, et al., 1980
Hitchcock, A.P.; Brion, C.E.; Van der Wiel, M.J.,
Absolute oscillator strengths for valence-shell ionic photofragmentation of N2O and CO2(8-75 eV),
Chem. Phys., 1980, 45, 461. [all data]
Sahini, Constantin, et al., 1978
Sahini, V.E.; Constantin, V.; Serban, I.,
Determination of ionization potentials using a MI-1305 mass spectrometer,
Rev. Roum. Chim., 1978, 23, 479. [all data]
Mark and Hille, 1978
Mark, T.D.; Hille, E.,
Cross section for single and double ionization of carbon dioxide by electron impact threshold up to 180 eV,
J. Chem. Phys., 1978, 69, 2492. [all data]
Jones and Taylor, 1978
Jones, G.G.; Taylor, J.W.,
A photoionization study of carbon dioxide dimers in a supersonic molecular beam,
J. Chem. Phys., 1978, 68, 1768. [all data]
Frey, Gotchev, et al., 1977
Frey, R.; Gotchev, B.; Kalman, O.F.; Peatman, W.B.; Pollak, H.; Schlag, E.W.,
Photoionization resonance spectra of CO2+ and threshold electron-ion coincidence measurements of the fragmentation of CO2+,
Chem. Phys., 1977, 21, 89. [all data]
Bussieres and Marmet, 1977
Bussieres, N.; Marmet, P.,
Ionization and dissociative ionization of CO2 by electron impact,
Can. J. Phys., 1977, 55, 1889. [all data]
Kronebusch and Berkowitz, 1976
Kronebusch, P.L.; Berkowitz, J.,
Photodissociative ionization in the 21-41 eV region: O2, N2, CO, NO, CO2, H2O, NH3 and CH4,
Int. J. Mass Spectrom. Ion Phys., 1976, 22, 283. [all data]
Batten, Taylor, et al., 1976
Batten, C.F.; Taylor, J.A.; Meisels, G.G.,
Photoionization processes at threshold. I. Threshold photoelectron and photoionization spectra of CO2,
J. Chem. Phys., 1976, 65, 3316. [all data]
Parr and Taylor, 1974
Parr, G.R.; Taylor, J.W.,
Photoionization mass spectrometry. IV. Carbon dioxide,
Int. J. Mass Spectrom. Ion Phys., 1974, 14, 467. [all data]
Semenov, Volkov, et al., 1973
Semenov, G.A.; Volkov, A.D.; Franktseva, K.E.,
Mass-spectrometric study of sodium carbonate vaporization,
Tr. Leningrad. Tekhnol. Inst. Tsellyul. Bum. Prom., 1973, 30, 153. [all data]
Parr and Taylor, 1973
Parr, G.R.; Taylor, J.W.,
A photoionization mass spectrometer utilizing a high intensity molecular beam sampling system and synchrotron radiation,
Rev. Sci. Instrum., 1973, 44, 1578. [all data]
Natalis, 1973
Natalis, P.,
Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques,
Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]
McCulloh, 1973
McCulloh, K.E.,
Photoionization of carbon dioxide,
J. Chem. Phys., 1973, 59, 4250. [all data]
Frost, Lee, et al., 1973
Frost, D.C.; Lee, S.T.; McDowell, C.A.,
Photoelectron spectra of OCSe, SCSe, and CSe2,
J. Chem. Phys., 1973, 59, 5484. [all data]
Brundle and Turner, 1969
Brundle, C.R.; Turner, D.W.,
Studies on the photoionisation of the linear triatomic molecules: N2O, COS, CS2 and CO2 using high-resolution photoelectron spectroscopy,
Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 195. [all data]
Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J.,
Photoelectron spectra and ionic structure of carbon dioxide, carbon disulphide and sulphur dioxide,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 111. [all data]
Spohr and Puttkamer, 1967
Spohr, R.; Puttkamer, E.v.,
Energiemessung von Photoelektronen und Franck-Condon-Faktoren der Schwingungsubergange einiger Molekulionen,
Z. Naturforsch., 1967, 22a, 705. [all data]
Carette, 1967
Carette, J.-D.,
Ionisation par impact electronique de CO2 et N2O,
Can. J. Phys., 1967, 45, 2931. [all data]
Nakata, Watanabe, et al., 1965
Nakata, R.S.; Watanabe, K.; Matsunaga, F.M.,
Absorption and photoionization coefficients of CO2 in the region 580-1670 A,
Sci. Light (Tokyo), 1965, 14, 54. [all data]
Tanaka, Jursa, et al., 1960
Tanaka, Y.; Jursa, A.S.; LeBlanc, F.J.,
Higher ionization potentials of linear triatomic molecules. I. CO2,
J. Chem. Phys., 1960, 32, 1199. [all data]
Eland and Berkowitz, 1977
Eland, J.H.D.; Berkowitz, J.,
Photoionization mass spectrometry of HI and DI at high resolution,
J. Chem. Phys., 1977, 67, 5034. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Schweig and Thiel, 1974
Schweig, A.; Thiel, W.,
Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds,
Mol. Phys., 1974, 27, 265. [all data]
Potts and Williams, 1974
Potts, A.W.; Williams, T.A.,
The observation of "forbidden" transitions in He II photoelectron spectra,
J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]
Crowe and McConkey, 1974
Crowe, A.; McConkey, J.W.,
Dissociative ionization by electron impact. III. O+, CO+ and C+ from CO2,
J. Phys. B:, 1974, 7, 349. [all data]
Cuthbert, Farren, et al., 1968
Cuthbert, J.; Farren, J.; PrahalladaRao, B.S.; Preece, E.R.,
Sequential mass spectrometry. III. Ions and fragments from carbon dioxide anddisulphide,
J. Phys. B:, 1968, 1, 62. [all data]
Eland and Berkowitz, 1977, 2
Eland, J.H.D.; Berkowitz, J.,
Formation and predissociation of CO2+(C2Σ+g),
J. Chem. Phys., 1977, 67, 2782. [all data]
Samson and Gardner, 1973
Samson, J.A.R.; Gardner, J.L.,
Fluorescence excitation and photoelectron spectra of CO2 induced by vacuum ultraviolet radiation between 185 and 716 angstroms,
J. Geophys. Res., 1973, 78, 3663. [all data]
Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A.,
Mass spectrometric study of the photoionization of small polyatomic molecules,
Advan. Mass Spectrom., 1967, 4, 767. [all data]
Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P.,
Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria,
Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092
. [all data]
McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P.,
Methyl Cation Affinities,
J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002
. [all data]
Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L.,
Photoionization mass spectrometry of trans-azomethane,
Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]
Meot-Ner (Mautner), 1978
Meot-Ner (Mautner), M.,
Ion - Molecule Condensation Reactions: A Mechanism for Chemical Synthesis in Ionized Reducing Planetary Atmospheres,
Origins Life, 1978, 9, 2, 115, https://doi.org/10.1007/BF00931409
. [all data]
Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B.,
Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements.,
J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004
. [all data]
Wenthold and Squires, 1994
Wenthold, P.G.; Squires, R.R.,
Gas-phase properties and reactivity of the acetate radical anion. Determination of the C-H bond strengths in acetic acid and acetate ion,
J. Am. Chem. Soc., 1994, 116, 26, 11890, https://doi.org/10.1021/ja00105a032
. [all data]
Spears and Fehsenfeld, 1972
Spears, K.G.; Fehsenfeld, F.C.,
Termolecular Association Reactions of Mg, Ca, and Ba Ions,
J. Chem. Phys., 1972, 56, 11, 5698, https://doi.org/10.1063/1.1677091
. [all data]
McKnight and Sawina, 1972
McKnight, L.G.; Sawina, J.M.,
Drift Velocities and Interactions of Cs+ Ions with Atmospheric Gases,
J. Chem. Phys., 1972, 57, 12, 5156, https://doi.org/10.1063/1.1678205
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Castleman and Keesee, 1981
Castleman, A.W.; Keesee, R.G.,
Electron and Ion Swarms,
Proc. Second Int. Swarm Seminar, L. G. Christoforou, ed. (Pergamon Press, New York), 1981, 189-201. [all data]
Keller and Beyer, 1971, 2
Keller, G.E.; Beyer, R.A.,
Drift Tube Studies of Carbon Dioxide Clustering to Potassium and Sodium Ions,
Bull. Am. Phys. Soc., 1971, 16, 214. [all data]
Praxmarer, Jordan, et al., 1993
Praxmarer, C. Hansel; Jordan, A.; Kraus, H.; Lindinger, W.,
Reactions of Kr2+ with Various Neutrals,
Int.J. Mass Spectrom. Ion. Proc., 1993, 129, 121, https://doi.org/10.1016/0168-1176(93)87036-R
. [all data]
Wadt, 1978
Wadt, W.R.,
The Electronic States of Ar2+, Kr2+, Xe2+. I. Potential Curves with and without Spin-Orbit Coupling,
J. Chem. Phys., 1978, 68, 2, 402, https://doi.org/10.1063/1.435773
. [all data]
Radzig and Smirnov, 1985
Radzig, R.; Smirnov, B.M.,
Reference Data on Atoms in Molecules and Ions, Springer, Berlin, 1985. [all data]
Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B.,
Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6,
J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t
. [all data]
Roehl, Snodgrass, et al., 1991
Roehl, C.M.; Snodgrass, J.T.; Deakyne, C.A.; Bowers, M.T.,
Photodissociation of CO3-.H2O: Observation of the O-.H2O + CO2 Product Channel,
J. Chem. Phys., 1991, 94, 10, 6546, https://doi.org/10.1063/1.460281
. [all data]
Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E.,
Variation of the retention index with temperature on squalane substrates,
J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy Pc Critical pressure Ptriple Triple point pressure S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature Tc Critical temperature Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.