Hydrogen cation
- Formula: H+
- Molecular weight: 1.00739
- IUPAC Standard InChIKey: GPRLSGONYQIRFK-UHFFFAOYSA-N
- CAS Registry Number: 12408-02-5
- Chemical structure:
This structure is also available as a 2d Mol file - Isotopologues:
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 100, reactions 101 to 150, reactions 151 to 200, reactions 201 to 250, reactions 251 to 300, reactions 301 to 350, reactions 351 to 400, reactions 401 to 450, reactions 451 to 500, reactions 501 to 550, reactions 551 to 600, reactions 651 to 700, reactions 701 to 750, reactions 751 to 800, reactions 801 to 850, reactions 851 to 900, reactions 901 to 950, reactions 951 to 1000, reactions 1001 to 1050, reactions 1051 to 1100, reactions 1101 to 1150, reactions 1151 to 1200, reactions 1201 to 1250, reactions 1251 to 1300, reactions 1301 to 1350, reactions 1351 to 1375
- Gas phase ion energetics data
- Options:
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 601 to 650
C7H7O- + =
By formula: C7H7O- + H+ = C7H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1666. ± 13. | kJ/mol | G+TS | Dahlke and Kass, 1992 | gas phase; Acid: anisole. Between HO- and m,p-methoxyphenide |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1636. ± 13. | kJ/mol | IMRB | Dahlke and Kass, 1992 | gas phase; Acid: anisole. Between HO- and m,p-methoxyphenide |
By formula: ClO3- + H+ = HClO3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1310. ± 14. | kJ/mol | IMRB | Meyer and Kass, 2010 | gas phase |
ΔrH° | <1300. ± 50. | kJ/mol | D-EA | Alekseev, Fedorova, et al., 1983 | gas phase; From ClO3F |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1284. ± 16. | kJ/mol | H-TS | Meyer and Kass, 2010 | gas phase |
C7H7O- + =
By formula: C7H7O- + H+ = C7H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1681. ± 13. | kJ/mol | G+TS | Dahlke and Kass, 1992 | gas phase; Acid: anisole. Between o-OMe-phenide and Me2NH. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1648. ± 13. | kJ/mol | IMRB | Dahlke and Kass, 1992 | gas phase; Acid: anisole. Between o-OMe-phenide and Me2NH. |
C5H6N- + =
By formula: C5H6N- + H+ = C5H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1643. ± 13. | kJ/mol | G+TS | DePuy, Kass, et al., 1988 | gas phase; Anion of N-methyl-pyrrole. Between Me2NH, H2O. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1615. ± 13. | kJ/mol | IMRB | DePuy, Kass, et al., 1988 | gas phase; Anion of N-methyl-pyrrole. Between Me2NH, H2O. |
By formula: C24H31O- + H+ = C24H32O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1438. ± 10. | kJ/mol | G+TS | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=334.7: 323 K |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1408. ± 8.4 | kJ/mol | IMRE | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=334.7: 323 K |
C27H26F3O- + = C27H27F3O
By formula: C27H26F3O- + H+ = C27H27F3O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1379. ± 10. | kJ/mol | G+TS | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=323.4: 323 K |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1350. ± 8.4 | kJ/mol | IMRE | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=323.4: 323 K |
C26H26ClO- + = C26H27ClO
By formula: C26H26ClO- + H+ = C26H27ClO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1397. ± 10. | kJ/mol | G+TS | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=327.0: 323 K |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1367. ± 8.4 | kJ/mol | IMRE | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=327.0: 323 K |
By formula: C27H29O- + H+ = C27H30O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1415. ± 10. | kJ/mol | G+TS | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=330.2: 323 K |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1386. ± 8.4 | kJ/mol | IMRE | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=330.2: 323 K |
By formula: C23H29O- + H+ = C23H30O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1450. ± 10. | kJ/mol | G+TS | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=337.2: 323 K |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1420. ± 8.4 | kJ/mol | IMRE | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=337.2: 323 K |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1475. ± 19. | kJ/mol | EIAE | Karpas and Klein, 1977 | gas phase; From HCOF. G3MP2B3 calculations indicate an EA of ca. 2.3 eV, HOF(A-) 7 kcal/mol less stable. |
ΔrH° | 1463. ± 14. | kJ/mol | Acid | Thynne and MacNeil, 1970 | gas phase; From CF2O |
C7H6Br- + =
By formula: C7H6Br- + H+ = C7H7Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1563. ± 13. | kJ/mol | G+TS | Wenthold, Wierschke, et al., 1994 | gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 13. | kJ/mol | IMRB | Wenthold, Wierschke, et al., 1994 | gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2 |
C7H6Br- + =
By formula: C7H6Br- + H+ = C7H7Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1564. ± 13. | kJ/mol | G+TS | Wenthold, Wierschke, et al., 1994 | gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 13. | kJ/mol | IMRB | Wenthold, Wierschke, et al., 1994 | gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2 |
By formula: C26H27O- + H+ = C26H28O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1408. ± 10. | kJ/mol | G+TS | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=328.7: 323 K |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1378. ± 8.4 | kJ/mol | IMRE | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=328.7: 323 K |
By formula: C29H33O- + H+ = C29H34O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1413. ± 10. | kJ/mol | G+TS | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=330.9: 323 K |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1383. ± 8.4 | kJ/mol | IMRE | Mishima, Mustanir, et al., 2000 | gas phase; Keto acidity; enol acidity=330.9: 323 K |
C7H6Cl- + =
By formula: C7H6Cl- + H+ = C7H7Cl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1563. ± 13. | kJ/mol | G+TS | Wenthold, Wierschke, et al., 1994 | gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 13. | kJ/mol | IMRB | Wenthold, Wierschke, et al., 1994 | gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2 |
C7H6Br- + =
By formula: C7H6Br- + H+ = C7H7Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1563. ± 13. | kJ/mol | G+TS | Wenthold, Wierschke, et al., 1994 | gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 13. | kJ/mol | IMRB | Wenthold, Wierschke, et al., 1994 | gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2 |
C5H5S- + =
By formula: C5H5S- + H+ = C5H6S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1589. ± 13. | kJ/mol | G+TS | DePuy, Kass, et al., 1988 | gas phase; Acid: 2-methylthiophene. Between MeOH, EtOH. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1561. ± 13. | kJ/mol | IMRB | DePuy, Kass, et al., 1988 | gas phase; Acid: 2-methylthiophene. Between MeOH, EtOH. |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1351. ± 23. | kJ/mol | D-EA | Zhai, Wang, et al., 2007 | gas phase |
ΔrH° | 1356. ± 26. | kJ/mol | D-EA | Sidorov, Rudnyi, et al., 1983 | gas phase; value altered from reference due to conversion from electron convention to ion convention |
F3Si- + =
By formula: F3Si- + H+ = HF3Si
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1498. ± 22. | kJ/mol | D-EA | Kawamata, Neigishi, et al., 1996 | gas phase; Vertical Detachment Energy: 2.76±0.05 eV. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1466. ± 22. | kJ/mol | H-TS | Kawamata, Neigishi, et al., 1996 | gas phase; Vertical Detachment Energy: 2.76±0.05 eV. |
C6H6N- + =
By formula: C6H6N- + H+ = C6H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1581. ± 13. | kJ/mol | G+TS | DePuy, Kass, et al., 1988 | gas phase; Acid: 3-methylpyridine. Comparable to EtOH. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1552. ± 13. | kJ/mol | IMRB | DePuy, Kass, et al., 1988 | gas phase; Acid: 3-methylpyridine. Comparable to EtOH. |
C6H6N- + =
By formula: C6H6N- + H+ = C6H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1577. ± 13. | kJ/mol | G+TS | DePuy, Kass, et al., 1988 | gas phase; Acid: 2-methylpyridine. Between EtOH, iPrOH |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1548. ± 13. | kJ/mol | IMRB | DePuy, Kass, et al., 1988 | gas phase; Acid: 2-methylpyridine. Between EtOH, iPrOH |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1560. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C6H11O- + =
By formula: C6H11O- + H+ = C6H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1558. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1531. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C4H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1608. ± 8.8 | kJ/mol | G+TS | N/A | gas phase; Relative to dGacid(MeOH)= 375. Acid: MeCH=C=CH2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1574. ± 8.4 | kJ/mol | IMRE | N/A | gas phase; Relative to dGacid(MeOH)= 375. Acid: MeCH=C=CH2 |
C7H15O- + =
By formula: C7H15O- + H+ = C7H16O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1553. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1525. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C6H11O- + =
By formula: C6H11O- + H+ = C6H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1559. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1532. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C5H11O- + =
By formula: C5H11O- + H+ = C5H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1562. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1534. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
By formula: C6H6F3O4- + H+ = C6H7F3O4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1419. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1395. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
By formula: C7H5F6O4- + H+ = C7H6F6O4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1387. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1356. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
C6H2F6NO2- + = C6H3F6NO2
By formula: C6H2F6NO2- + H+ = C6H3F6NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1357. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1328. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
By formula: C13H11F3NO5- + H+ = C13H12F3NO5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1364. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1331. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
By formula: C14H10F6NO5- + H+ = C14H11F6NO5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1340. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1303. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
By formula: C12H8F3N2O3- + H+ = C12H9F3N2O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1302. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1272. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
By formula: C13H7F6N2O3- + H+ = C13H8F6N2O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1291. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1259. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
C13H10BrF3NO5- + = C13H11BrF3NO5
By formula: C13H10BrF3NO5- + H+ = C13H11BrF3NO5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1363. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1326. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
C14H9BrF6NO5- + = C14H10BrF6NO5
By formula: C14H9BrF6NO5- + H+ = C14H10BrF6NO5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1333. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1295. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
By formula: C10H13F3NO5- + H+ = C10H14F3NO5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1384. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1357. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
By formula: C11H12F6NO5- + H+ = C11H13F6NO5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1395. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1370. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
C8H11N2O5- + = C8H12N2O5
By formula: C8H11N2O5- + H+ = C8H12N2O5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1353. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1326. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
By formula: C9H10F3N2O3- + H+ = C9H11F3N2O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1331. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1297. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
By formula: C7H8N3O- + H+ = C7H9N3O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1323. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1294. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
C10H14NO5- + = C10H15NO5
By formula: C10H14NO5- + H+ = C10H15NO5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1395. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1361. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
C12H10NO3- + = C12H11NO3
By formula: C12H10NO3- + H+ = C12H11NO3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1370. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1338. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: enol form of acid more stable. |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1556. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1529. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1557. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1530. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1556. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1529. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1557. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1530. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C7H13O- + =
By formula: C7H13O- + H+ = C7H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1559. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1532. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C7H13O- + =
By formula: C7H13O- + H+ = C7H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1556. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1528. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1561. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Dahlke and Kass, 1992
Dahlke, G.D.; Kass, S.R.,
The Ortho-dehydrophenoxy Anion,
Int. J. Mass Spectrom. Ion Proc., 1992, 117, 633, https://doi.org/10.1016/0168-1176(92)80117-J
. [all data]
Meyer and Kass, 2010
Meyer, M.M.; Kass, S.R.,
Experimental and Theoretical Gas-Phase Acidities, Bond Dissociation Energies, and Heats of Formation of HClOx, x=1-4,
J. Phys. Chem. A, 2010, 114, 12, 4086-4092, https://doi.org/10.1021/jp100888k
. [all data]
Alekseev, Fedorova, et al., 1983
Alekseev, V.I.; Fedorova, L.I.; Baluev, A.V.,
Mass Spectrometric Study of Thermochemical Characteristics of Perchloryl Fluoride and its Decomposition Product Chlorosyl Fluoride, Izv. Akad. Nauk SSR Ser. Khim. 1084, 1983. [all data]
DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P.,
Formation and Reactions of Heteroaromatic Anions in the Gas Phase,
J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001
. [all data]
Mishima, Mustanir, et al., 2000
Mishima, M.; Mustanir; Eventova, I.; Rappoport, Z.,
Acidities and pK(Enol) values of stable simple enols in the gas phase,
J. Chem. Soc. Perkin Trans., 2000, 2, 7, 1505-1512, https://doi.org/10.1039/b001155j
. [all data]
Karpas and Klein, 1977
Karpas, Z.; Klein, F.S.,
The gas phase ion chemistry of carbonyl compounds: Formyl fluoride and a binary mixture of H2CO-F2CO or H2CO-Cl2CO,
Int. J. Mass Spectrom. Ion Phys., 1977, 24, 137. [all data]
Thynne and MacNeil, 1970
Thynne, J.C.J.; MacNeil, K.A.G.,
Ionisation and dissociation of carbonyl fluoride and trifluoromethyl hypofluorite by electron impact,
Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 95. [all data]
Wenthold, Wierschke, et al., 1994
Wenthold, P.G.; Wierschke, S.G.; Nash, J.J.; Squires, R.R.,
Biradical thermochemistry from collision-induced dissociation threshold energy measurements .2. Experimental and theoretical studies of the Mechanism and Thermochemistry of Formation of alph,
J. Am. Chem. Soc., 1994, 116, 16, 7378, https://doi.org/10.1021/ja00095a048
. [all data]
Zhai, Wang, et al., 2007
Zhai, H.J.; Wang, L.M.; Li, S.D.; Wang, L.S.,
Vibrationally resolved photoelectron spectroscopy of BO- and BO2-: A joint experimental and theoretical study,
J. Phys. Chem. A, 2007, 111, 6, 1030-1035, https://doi.org/10.1021/jp0666939
. [all data]
Sidorov, Rudnyi, et al., 1983
Sidorov, L.N.; Rudnyi, E.B.; Nikitin, M.I.; Sorokin, I.D.,
Gas Phase Anion Exchange Reactions and the Determination of the Heats of Formation of Metaphosphate (PO3-), metaborate (BO2-), and perrhennate (ReO4-),
Dokl. Akad. Nauk SSSR Ser. Khim., 1983, 272, 1172. [all data]
Kawamata, Neigishi, et al., 1996
Kawamata, H.; Neigishi, Y.; Kishi, R.; Iwata, S.; Nakajima, A.; Kaya, K.,
Photoelectron Spectroscopy of Silicon-Fluorine Binary Cluster Anions (SinFm-),
J. Chem. Phys., 1996, 105, 13, 5369, https://doi.org/10.1063/1.472377
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Mishima, Matsuoka, et al., 2004
Mishima, M.; Matsuoka, M.; Lei, Y.X.; Rappoport, Z.,
Gas-phase acidities of disubstituted methanes and of enols of carboxamides substituted by electron-withdrawing groups,
J. Org. Chem., 2004, 69, 18, 5947-5965, https://doi.org/10.1021/jo040196b
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.