Hydrogen cation
- Formula: H+
- Molecular weight: 1.00739
- IUPAC Standard InChIKey: GPRLSGONYQIRFK-UHFFFAOYSA-N
- CAS Registry Number: 12408-02-5
- Chemical structure:
This structure is also available as a 2d Mol file - Isotopologues:
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 100, reactions 101 to 150, reactions 151 to 200, reactions 201 to 250, reactions 251 to 300, reactions 351 to 400, reactions 401 to 450, reactions 451 to 500, reactions 501 to 550, reactions 551 to 600, reactions 601 to 650, reactions 651 to 700, reactions 701 to 750, reactions 751 to 800, reactions 801 to 850, reactions 851 to 900, reactions 901 to 950, reactions 951 to 1000, reactions 1001 to 1050, reactions 1051 to 1100, reactions 1101 to 1150, reactions 1151 to 1200, reactions 1201 to 1250, reactions 1251 to 1300, reactions 1301 to 1350, reactions 1351 to 1375
- Gas phase ion energetics data
- Options:
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 301 to 350
C6H2Cl3- + =
By formula: C6H2Cl3- + H+ = C6H3Cl3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1569. ± 8.8 | kJ/mol | G+TS | Schlosser, Marzi, et al., 2001 | gas phase; Acid: 1,2,3-trichlorobenzene. Anion assigned based on ab initio calculations. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1535. ± 8.4 | kJ/mol | IMRE | Schlosser, Marzi, et al., 2001 | gas phase; Acid: 1,2,3-trichlorobenzene. Anion assigned based on ab initio calculations. |
C6H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1561. ± 17. | kJ/mol | G+TS | Lee and Squires, 1986 | gas phase; Between SiH4, tBuOH; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1531. ± 17. | kJ/mol | IMRB | Lee and Squires, 1986 | gas phase; Between SiH4, tBuOH; value altered from reference due to change in acidity scale |
C4H- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1507. ± 13. | kJ/mol | D-EA | Pino, Tulej, et al., 2002 | gas phase |
ΔrH° | 1508. ± 12. | kJ/mol | Endo | Shi and Ervin, 2000 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1473. ± 14. | kJ/mol | H-TS | Pino, Tulej, et al., 2002 | gas phase |
ΔrG° | 1474. ± 13. | kJ/mol | H-TS | Shi and Ervin, 2000 | gas phase |
C5H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1545. ± 5.0 | kJ/mol | D-EA | Zimmerman, Gygax, et al., 1978 | gas phase; Acid: 1,4-pentadiene. (Z)-1,3-pentadiene is 7.0 kcal/mol more stable(weaker acid) |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1525. ± 7.9 | kJ/mol | H-TS | Zimmerman, Gygax, et al., 1978 | gas phase; Acid: 1,4-pentadiene. (Z)-1,3-pentadiene is 7.0 kcal/mol more stable(weaker acid) |
HS2- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1447. ± 15. | kJ/mol | D-EA | Entfellner and Boesl, 2009 | gas phase |
ΔrH° | 1448. ± 13. | kJ/mol | G+TS | Ohair, Depuy, et al., 1993 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1418. ± 15. | kJ/mol | H-TS | Entfellner and Boesl, 2009 | gas phase |
ΔrG° | 1418. ± 13. | kJ/mol | IMRB | Ohair, Depuy, et al., 1993 | gas phase |
C8H11- + =
By formula: C8H11- + H+ = C8H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1576. ± 13. | kJ/mol | G+TS | Lee and Squires, 1986 | gas phase; Between EtOH, nPrOH; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1548. ± 13. | kJ/mol | IMRB | Lee and Squires, 1986 | gas phase; Between EtOH, nPrOH; value altered from reference due to change in acidity scale |
C2F5- + =
By formula: C2F5- + H+ = C2HF5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1567. ± 14. | kJ/mol | G+TS | Sullivan and Beauchamp, 1976 | gas phase; Between tBuOH and HF; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1535. ± 13. | kJ/mol | IMRB | Sullivan and Beauchamp, 1976 | gas phase; Between tBuOH and HF; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1693. ± 6.3 | kJ/mol | CIDC | Tian, Fattahi, et al., 2006 | gas phase |
ΔrH° | 1661. ± 21. | kJ/mol | G+TS | Kass, Filley, et al., 1986 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1659. ± 6.7 | kJ/mol | H-TS | Tian, Fattahi, et al., 2006 | gas phase |
ΔrG° | 1628. ± 21. | kJ/mol | IMRB | Kass, Filley, et al., 1986 | gas phase |
C4H7O- + =
By formula: C4H7O- + H+ = C4H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1526. ± 8.8 | kJ/mol | D-EA | Alconcel, Deyerl, et al., 2001 | gas phase |
ΔrH° | 1523. ± 9.6 | kJ/mol | D-EA | Zimmerman, Reed, et al., 1977 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1499. ± 9.6 | kJ/mol | H-TS | Alconcel, Deyerl, et al., 2001 | gas phase |
ΔrG° | 1496. ± 10. | kJ/mol | H-TS | Zimmerman, Reed, et al., 1977 | gas phase |
C4H5O- + =
By formula: C4H5O- + H+ = C4H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1484. ± 8.8 | kJ/mol | G+TS | Bartmess and Kiplinger, 1986 | gas phase; Acid: CH3CH=CHCHO; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1456. ± 8.4 | kJ/mol | IMRE | Bartmess and Kiplinger, 1986 | gas phase; Acid: CH3CH=CHCHO; value altered from reference due to change in acidity scale |
BF2O- + =
By formula: BF2O- + H+ = HBF2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1579. ± 35. | kJ/mol | Acid | Larson and McMahon, 1987 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable. |
C3H8B- + =
By formula: C3H8B- + H+ = C3H9B
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1532. ± 26. | kJ/mol | G+TS | Murphy and Beauchamp, 1976 | gas phase; Between AsH3,PH3; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1502. ± 25. | kJ/mol | IMRB | Murphy and Beauchamp, 1976 | gas phase; Between AsH3,PH3; value altered from reference due to change in acidity scale |
C9H4N3O2- + =
By formula: C9H4N3O2- + H+ = C9H5N3O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1292. ± 9.6 | kJ/mol | G+TS | Koppel, Taft, et al., 1994 | gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by up to 1.3 kcal/mol. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1268. ± 8.4 | kJ/mol | IMRE | Koppel, Taft, et al., 1994 | gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by up to 1.3 kcal/mol. |
C5H9O- + =
By formula: C5H9O- + H+ = C5H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1545. ± 11. | kJ/mol | G+TS | Chyall, Brickhouse, et al., 1994 | gas phase; By equilibration, more substituted site is less acidic than Me by 2.3 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1518. ± 10. | kJ/mol | IMRE | Chyall, Brickhouse, et al., 1994 | gas phase; By equilibration, more substituted site is less acidic than Me by 2.3 kcal/mol |
C4H10NO- + =
By formula: C4H10NO- + H+ = C4H11NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1551. ± 8.8 | kJ/mol | G+TS | Bartmess, Basso, et al., 1983 | gas phase; See also Mahoney, Mendenhall, et al., 1973, Bordwell and Liu, 1996 for supporting DH values |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1523. ± 8.4 | kJ/mol | IMRE | Bartmess, Basso, et al., 1983 | gas phase; See also Mahoney, Mendenhall, et al., 1973, Bordwell and Liu, 1996 for supporting DH values |
By formula: CH3O2Si- + H+ = CH4O2Si
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1512. ± 26. | kJ/mol | G+TS | Damrauer and Krempp, 1990 | gas phase; Between EtCHO,(Me3Si)2NH. Value revised, based on data in Grimm and Bartmess, 1992. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1481. ± 25. | kJ/mol | IMRB | Damrauer and Krempp, 1990 | gas phase; Between EtCHO,(Me3Si)2NH. Value revised, based on data in Grimm and Bartmess, 1992. |
C4H4F3O2S- + = C4H5F3O2S
By formula: C4H4F3O2S- + H+ = C4H5F3O2S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1436. ± 8.8 | kJ/mol | G+TS | Taft, 1987 | gas phase; Acid = CF3SO2CH2CH=CH2; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1407. ± 8.4 | kJ/mol | IMRE | Taft, 1987 | gas phase; Acid = CF3SO2CH2CH=CH2; value altered from reference due to change in acidity scale |
C6H3Cl2- + =
By formula: C6H3Cl2- + H+ = C6H4Cl2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1565. ± 8.8 | kJ/mol | G+TS | Schlosser, Marzi, et al., 2001 | gas phase; Acid: m-dichlorobenzene. Anion assigned based on ab initio calculations. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 8.4 | kJ/mol | IMRE | Schlosser, Marzi, et al., 2001 | gas phase; Acid: m-dichlorobenzene. Anion assigned based on ab initio calculations. |
C8H9- + =
By formula: C8H9- + H+ = C8H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1588. ± 8.8 | kJ/mol | G+TS | Lee and Squires, 1986 | gas phase; 1.4 kcal > MeOH; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1559. ± 8.4 | kJ/mol | IMRE | Lee and Squires, 1986 | gas phase; 1.4 kcal > MeOH; value altered from reference due to change in acidity scale |
By formula: CH5Ge- + H+ = CH6Ge
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1537. ± 8.8 | kJ/mol | G+TS | Decouzon, Gal, et al., 1993 | gas phase |
ΔrH° | 1534. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1503. ± 8.4 | kJ/mol | IMRE | Decouzon, Gal, et al., 1993 | gas phase |
ΔrG° | 1501. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase |
C6H3Cl2- + =
By formula: C6H3Cl2- + H+ = C6H4Cl2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1578. ± 8.8 | kJ/mol | G+TS | Schlosser, Marzi, et al., 2001 | gas phase; Acid: o-dichlorobenzene. Anion assigned based on ab initio calculations. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1543. ± 8.4 | kJ/mol | IMRE | Schlosser, Marzi, et al., 2001 | gas phase; Acid: o-dichlorobenzene. Anion assigned based on ab initio calculations. |
C9H11- + =
By formula: C9H11- + H+ = C9H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1549. ± 10. | kJ/mol | G+TS | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1517. ± 8.4 | kJ/mol | IMRE | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
By formula: C10H13- + H+ = C10H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1546. ± 10. | kJ/mol | G+TS | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1513. ± 8.4 | kJ/mol | IMRE | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
By formula: C10H13- + H+ = C10H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1544. ± 10. | kJ/mol | G+TS | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1512. ± 8.4 | kJ/mol | IMRE | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
By formula: C11H15- + H+ = C11H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1543. ± 10. | kJ/mol | G+TS | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1510. ± 8.4 | kJ/mol | IMRE | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1421. ± 14. | kJ/mol | G+TS | Sallans, Lane, et al., 1985 | gas phase |
ΔrH° | 1426. ± 15. | kJ/mol | Acid | Feigerle, Corderman, et al., 1981 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1389. ± 13. | kJ/mol | IMRB | Sallans, Lane, et al., 1985 | gas phase |
ΔrG° | 1394. ± 22. | kJ/mol | H-TS | Feigerle, Corderman, et al., 1981 | gas phase |
C8H9- + =
By formula: C8H9- + H+ = C8H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1552. ± 10. | kJ/mol | G+TS | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1520. ± 8.4 | kJ/mol | IMRE | Mishima, Kinoshita, et al., 2002 | gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB |
By formula: C2H6BO3- + H+ = C2H7BO3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1507. ± 19. | kJ/mol | G+TS | Kiplinger, Crowder, et al., 1994 | gas phase; between tBuCH=NOH, pyrrole. Stein, Rikkers, et al. is wrong on GpAd for (MeO)2BOH |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1479. ± 19. | kJ/mol | IMRB | Kiplinger, Crowder, et al., 1994 | gas phase; between tBuCH=NOH, pyrrole. Stein, Rikkers, et al. is wrong on GpAd for (MeO)2BOH |
C3H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1698. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase |
ΔrH° | >1693.5 ± 2.5 | kJ/mol | G+TS | Froelicher, Freiser, et al., 1986 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1665. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase |
ΔrG° | >1661.0 | kJ/mol | IMRB | Froelicher, Freiser, et al., 1986 | gas phase |
By formula: C4H6NO4S- + H+ = C4H7NO4S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1381. ± 8.8 | kJ/mol | G+TS | Bouchoux, Jaudon, et al., 1991 | gas phase; AM1 implies oximate anion (authors), may be carbanion by struct/react.-JEB |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1353. ± 8.4 | kJ/mol | IMRE | Bouchoux, Jaudon, et al., 1991 | gas phase; AM1 implies oximate anion (authors), may be carbanion by struct/react.-JEB |
By formula: H2NOSi- + H+ = H3NOSi
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1504. ± 18. | kJ/mol | G+TS | Hankin, Krempp, et al., 1995 | gas phase; Between CF3CH2OH,MeSH, but poor thresholds due to competeting reactions. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1474. ± 17. | kJ/mol | IMRB | Hankin, Krempp, et al., 1995 | gas phase; Between CF3CH2OH,MeSH, but poor thresholds due to competeting reactions. |
C7H19Si2- + =
By formula: C7H19Si2- + H+ = C7H20Si2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1563. ± 9.2 | kJ/mol | G+TS | Romer, Gatev, et al., 1998 | gas phase |
ΔrH° | 1563. ± 17. | kJ/mol | D-EA | Brinkman, Berger, et al., 1994 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1531. ± 8.4 | kJ/mol | IMRE | Romer, Gatev, et al., 1998 | gas phase |
ΔrG° | 1531. ± 17. | kJ/mol | H-TS | Brinkman, Berger, et al., 1994 | gas phase |
C4H7O2- + =
By formula: C4H7O2- + H+ = C4H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1555. ± 17. | kJ/mol | G+TS | Haas, Giblin, et al., 1998 | gas phase; From transesterification equilibria |
ΔrH° | 1543. ± 5.0 | kJ/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1527. ± 17. | kJ/mol | IMRE | Haas, Giblin, et al., 1998 | gas phase; From transesterification equilibria |
C3H6NO2- + =
By formula: C3H6NO2- + H+ = C3H7NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1430. ± 7.9 | kJ/mol | CIDC | Jones, Bernier, et al., 2007 | gas phase |
ΔrH° | 1425. ± 8.8 | kJ/mol | G+TS | Locke and McIver, 1983 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1401. ± 8.4 | kJ/mol | H-TS | Jones, Bernier, et al., 2007 | gas phase |
ΔrG° | 1396. ± 8.4 | kJ/mol | IMRE | Locke and McIver, 1983 | gas phase |
CH4N- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1682. ± 11. | kJ/mol | D-EA | Radisic, Xu, et al., 2002 | gas phase |
ΔrH° | 1687.0 ± 3.4 | kJ/mol | G+TS | MacKay, Hemsworth, et al., 1976 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1651. ± 11. | kJ/mol | H-TS | Radisic, Xu, et al., 2002 | gas phase |
ΔrG° | 1655.6 ± 2.9 | kJ/mol | IMRE | MacKay, Hemsworth, et al., 1976 | gas phase |
C4F9O- + =
By formula: C4F9O- + H+ = C4HF9O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1387. ± 9.2 | kJ/mol | G+TS | Taft, Koppel, et al., 1990 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1356. ± 8.4 | kJ/mol | IMRE | Taft, Koppel, et al., 1990 | gas phase |
ΔrG° | 1352. ± 21. | kJ/mol | IMRB | Koppel, Pikver, et al., 1981 | gas phase |
ΔrG° | 1345. ± 21. | kJ/mol | IMRB | Clair and McMahon, 1980 | gas phase |
C9H5N2- + =
By formula: C9H5N2- + H+ = C9H6N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1340. ± 8.8 | kJ/mol | G+TS | Koppel, Taft, et al., 1994 | gas phase |
ΔrH° | 1342. ± 8.8 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1315. ± 8.4 | kJ/mol | IMRE | Koppel, Taft, et al., 1994 | gas phase |
ΔrG° | 1317. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase |
C2HO- + =
By formula: C2HO- + H+ = C2H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1526. ± 8.8 | kJ/mol | G+TS | Oakes, Jones, et al., 1983 | gas phase; Acid: ketene; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1497. ± 8.4 | kJ/mol | IMRB | Oakes, Jones, et al., 1983 | gas phase; Acid: ketene; value altered from reference due to change in acidity scale |
C5H9O2- + =
By formula: C5H9O2- + H+ = C5H10O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1449. ± 8.8 | kJ/mol | G+TS | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrH° | 1448. ± 10. | kJ/mol | G+TS | McLuckey, Cameron, et al., 1981 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1419. ± 8.4 | kJ/mol | IMRE | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrG° | 1419. ± 9.6 | kJ/mol | CIDC | McLuckey, Cameron, et al., 1981 | gas phase |
C4H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1746. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase |
ΔrH° | 1757. ± 8.4 | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1709. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase |
ΔrG° | 1719. ± 8.8 | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase |
C5H9- + =
By formula: C5H9- + H+ = C5H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1741. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase |
ΔrH° | 1750. ± 8.4 | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1705. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase |
ΔrG° | 1714. ± 8.8 | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase |
C4H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1724. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase |
ΔrH° | 1729. ± 20. | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1690. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase |
ΔrG° | 1695. ± 21. | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase |
C6H11O2- + =
By formula: C6H11O2- + H+ = C6H12O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1448. ± 8.8 | kJ/mol | G+TS | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrH° | 1447. ± 10. | kJ/mol | G+TS | McLuckey, Cameron, et al., 1981 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1419. ± 8.4 | kJ/mol | IMRE | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrG° | 1418. ± 9.6 | kJ/mol | CIDC | McLuckey, Cameron, et al., 1981 | gas phase |
C2H5S- + =
By formula: C2H5S- + H+ = C2H6S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1633. ± 6.3 | kJ/mol | D-EA | Moran and Ellison, 1988 | gas phase |
ΔrH° | 1645. ± 8.8 | kJ/mol | G+TS | Ingemann and Nibbering, 1985 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1602. ± 7.1 | kJ/mol | H-TS | Moran and Ellison, 1988 | gas phase |
ΔrG° | 1615. ± 8.4 | kJ/mol | IMRE | Ingemann and Nibbering, 1985 | gas phase |
C4H9- + =
By formula: C4H9- + H+ = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1728. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase |
ΔrH° | 1735. ± 20. | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1692. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase |
ΔrG° | 1699. ± 21. | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase |
C4H7N2O3- + =
By formula: C4H7N2O3- + H+ = C4H8N2O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1385. ± 9.2 | kJ/mol | CIDC | Jones, Bernier, et al., 2007 | gas phase |
ΔrH° | 1387. ± 13. | kJ/mol | G+TS | O'Hair, Bowie, et al., 1992 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1356. ± 9.6 | kJ/mol | H-TS | Jones, Bernier, et al., 2007 | gas phase |
ΔrG° | 1359. ± 13. | kJ/mol | CIDC | O'Hair, Bowie, et al., 1992 | gas phase |
C6H13N4O2- + =
By formula: C6H13N4O2- + H+ = C6H14N4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1381. ± 9.2 | kJ/mol | CIDC | Jones, Bernier, et al., 2007 | gas phase |
ΔrH° | 1388. ± 13. | kJ/mol | G+TS | O'Hair, Bowie, et al., 1992 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1352. ± 9.6 | kJ/mol | H-TS | Jones, Bernier, et al., 2007 | gas phase |
ΔrG° | 1359. ± 13. | kJ/mol | CIDC | O'Hair, Bowie, et al., 1992 | gas phase |
C6H11- + =
By formula: C6H11- + H+ = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1750. ± 8.4 | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase |
ΔrH° | 1702.1 ± 3.8 | kJ/mol | G+TS | Bohme, Lee-Ruff, et al., 1972 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1713. ± 9.2 | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase |
ΔrG° | >1665.2 | kJ/mol | IMRB | Bohme, Lee-Ruff, et al., 1972 | gas phase |
By formula: C3H5O3- + H+ = C3H6O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1431. ± 8.8 | kJ/mol | G+TS | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrH° | 1433. ± 8.8 | kJ/mol | G+TS | Taft and Topsom, 1987 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1403. ± 8.4 | kJ/mol | IMRE | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrG° | 1406. ± 8.4 | kJ/mol | IMRE | Taft and Topsom, 1987 | gas phase |
C5H9O- + =
By formula: C5H9O- + H+ = C5H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1537. ± 9.2 | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; Structure assignment revised to less-substituted site: Chyall, Brickhouse, et al., 1994 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1508. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; Structure assignment revised to less-substituted site: Chyall, Brickhouse, et al., 1994 |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Schlosser, Marzi, et al., 2001
Schlosser, M.; Marzi, E.; Cottet, F.; Buker, H.H.; Nibbering, N.M.M.,
The acidity of chloro-substituted benzenes: A comparison of gas phase, ab initio, and kinetic data,
Chem. Eur. J., 2001, 7, 16, 3511-3516, https://doi.org/10.1002/1521-3765(20010817)7:16<3511::AID-CHEM3511>3.0.CO;2-U
. [all data]
Lee and Squires, 1986
Lee, R.E.; Squires, R.R.,
Anionic homoaromaticity: A gas phase experimental study,
J. Am. Chem. Soc., 1986, 105, 5078. [all data]
Pino, Tulej, et al., 2002
Pino, T.; Tulej, M.; Guthe, F.; Pachkov, M.; Maier, J.P.,
Photodetachment spectroscopy of the C2nH- (n=2-4) anions in the vicinity of their electron detachment threshold,
J. Chem. Phys., 2002, 116, 14, 6126-6131, https://doi.org/10.1063/1.1451248
. [all data]
Shi and Ervin, 2000
Shi, Y.; Ervin, K.M.,
Gas-phase acidity and C-H bond energy of diacetylene,
Chem. Phys. Lett., 2000, 318, 1-3, 149-154, https://doi.org/10.1016/S0009-2614(00)00023-3
. [all data]
Zimmerman, Gygax, et al., 1978
Zimmerman, A.H.; Gygax, R.; Brauman, J.I.,
Electron photodetachment spectroscopy of polyene anions. Electron affinities of pentadienyl and heptatrienyl radicals,
J. Am. Chem. Soc., 1978, 100, 5595. [all data]
Entfellner and Boesl, 2009
Entfellner, M.; Boesl, U.,
Photodetachment-photoelectron spectroscopy of disulfanide: the ground and first excited electronic state of HS2 and DS2,
Phys. Chem. Chem. Phys., 2009, 11, 15, 2657-2662, https://doi.org/10.1039/b820174a
. [all data]
Ohair, Depuy, et al., 1993
Ohair, R.A.J.; Depuy, C.H.; Bierbaum, V.M.,
Gas-Phase Chemistry and Thermochemistry of the Hydroxysulfide Anion, HOS-,
J. Phys. Chem., 1993, 97, 30, 7955, https://doi.org/10.1021/j100132a026
. [all data]
Sullivan and Beauchamp, 1976
Sullivan, S.A.; Beauchamp, J.L.,
Competition between proton transfer and elimination in the reactions of strong bases with fluoroethanes in the gas phase. Influence of base strength on reactivity,
J. Am. Chem. Soc., 1976, 98, 1160. [all data]
Tian, Fattahi, et al., 2006
Tian, Z.X.; Fattahi, A.; Lis, L.; Kass, S.R.,
Cycloalkane and cycloalkene C-H bond dissociation energies,
J. Am. Chem. Soc., 2006, 128, 51, 17087-17092, https://doi.org/10.1021/ja065348u
. [all data]
Kass, Filley, et al., 1986
Kass, S.R.; Filley, J.; Van Doren, J.M.; DePuy, C.H.,
Nitrous oxide in gas-phase ion-molecule chemistry: A versatile reagent for the determination of carbanion structure,
J. Am. Chem. Soc., 1986, 108, 2849. [all data]
Alconcel, Deyerl, et al., 2001
Alconcel, L.S.; Deyerl, H.J.; Continetti, R.E.,
Effects of alkyl substitution on the energetics of enolate anions and radicals,
J. Am. Chem. Soc., 2001, 123, 50, 12675-12681, https://doi.org/10.1021/ja0120431
. [all data]
Zimmerman, Reed, et al., 1977
Zimmerman, A.H.; Reed, K.J.; Brauman, J.I.,
Photodetachment of electrons from enolate anions. Gas phase electron affinities of enolate radicals,
J. Am. Chem. Soc., 1977, 99, 7203. [all data]
Bartmess and Kiplinger, 1986
Bartmess, J.E.; Kiplinger, J.P.,
'Kinetic' vs. thermodynamic acidities of enones in the gas phase,
J. Org. Chem., 1986, 51, 2173. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Trends in Gas Phase Fluoride Ion Affinities of the Main Group Oxyfluorides and Fluoride Sulfides. Fluoride Adducts of FAsO, FPO, FPO2, F2SiO, F4SO, FBO, F2SiS, FPS, FAsS, F2S2, and S2O.,
Inorg. Chem., 1987, 26, 24, 4018, https://doi.org/10.1021/ic00271a011
. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Murphy and Beauchamp, 1976
Murphy, M.K.; Beauchamp, J.L.,
Acid-base properties and gas-phase ion chemistry of (CH3)3B,
J. Am. Chem. Soc., 1976, 98, 1433. [all data]
Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M.,
The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids,
J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038
. [all data]
Leito, Raamat, et al., 2009
Leito, I.; Raamat, E.; Kutt, A.; Saame, J.; Kipper, K.; Koppel, I.A.; Koppel, I.; Zhang, M.; Mishima, M.; Yagupolskii, L.M.; Garlyauskayte, R.Y.; Filatov, A.A.,
Revision of the Gas-Phase Acidity Scale below 300 kcal mol(-1),
J. Phys. Chem. A, 2009, 113, 29, 8421-8424, https://doi.org/10.1021/jp903780k
. [all data]
Chyall, Brickhouse, et al., 1994
Chyall, L.J.; Brickhouse, M.D.; Schnute, M.E.; Squires, R.R.,
Kinetic versus thermodynamic control in the deprotonation of unsymmetrical ketones in the gas phase,
J. Am. Chem. Soc., 1994, 116, 19, 8681, https://doi.org/10.1021/ja00098a031
. [all data]
Bartmess, Basso, et al., 1983
Bartmess, J.E.; Basso, T.; eorgiadis, R.M.,
The electron affinity of a nitroxide radical,
J. Phys. Chem., 1983, 87, 912. [all data]
Mahoney, Mendenhall, et al., 1973
Mahoney, L.R.; Mendenhall, G.D.; Ingold, K.U.,
Calorimetric and Equilibrium Studies on Some Stable Nitroxide and Iminoxy Radicals. Approximate O-H BDEs in Hydroxylamines and Oximes.,
J. Am. Chem. Soc., 1973, 95, 26, 8610, https://doi.org/10.1021/ja00807a018
. [all data]
Bordwell and Liu, 1996
Bordwell, F.G.; Liu, W.-Z.,
Solvent Effects on Homolytic Bond Dissociation Energies of Hydroxylic Acids,
J. Am. Chem. Soc., 1996, 118, 44, 10819-10823, https://doi.org/10.1021/ja961469q
. [all data]
Damrauer and Krempp, 1990
Damrauer, R.; Krempp, M.,
Gas Phase Ion-Molecule Chemistry of Methoxy-Substituted Silanes: Collision Induced Decomposition of Siloxide Ions Leading to Anions of Silaacetaldehyde and Methyl Silaformate,
Organomet., 1990, 9, 4, 999, https://doi.org/10.1021/om00118a015
. [all data]
Grimm and Bartmess, 1992
Grimm, D.T.; Bartmess, J.E.,
The Intrinsic (Gas Phase) Basicity of some Anions Commonly Used in Condensed-Phase Synthesis,
J. Am. Chem. Soc., 1992, 114, 4, 1227, https://doi.org/10.1021/ja00030a016
. [all data]
Taft, 1987
Taft, R.W.,
The Nature and Analysis of Substitutent Electronic Effects,
Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Decouzon, Gal, et al., 1993
Decouzon, M.; Gal, J.F.; Gayraud, J.; Maria, P.C.; Vaglio, G.A.; Volpe, P.,
Fourier Transform-Ion Cyclotron Resonance Study of the Gas-Phase Acidities of Germane and Methylgermane - Bond Dissociation Energy of German,
J. Am. Soc. Mass Spectrom., 1993, 4, 1, 54, https://doi.org/10.1016/1044-0305(93)85042-V
. [all data]
Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C.,
Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes,
J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j
. [all data]
Mishima, Kinoshita, et al., 2002
Mishima, M.; Kinoshita, T.; Hattori, Y.; Takeuchi, K.,
Gas-phase acidities of cycloheptatrienes: effects of alkyl groups on the stability of carbanions,
Eur. J. Mass Spectrom., 2002, 8, 1, 359-366, https://doi.org/10.1255/ejms.499
. [all data]
Sallans, Lane, et al., 1985
Sallans, L.; Lane, K.R.; Squires, R.R.; Freiser, B.S.,
Generation and reactions of atomic metal anions in the gas phase. Determination of the heterolytic and homolytic bond energies of VH, VrH, FeH, CoH, and MoH,
J. Am. Chem. Soc., 1985, 107, 4379. [all data]
Feigerle, Corderman, et al., 1981
Feigerle, C.S.; Corderman, R.R.; Bobashev, S.V.; Lineberger, W.C.,
Binding Energies and Structure of Transition Metal Negative Ions,
J. Chem. Phys., 1981, 74, 3, 1580, https://doi.org/10.1063/1.441289
. [all data]
Kiplinger, Crowder, et al., 1994
Kiplinger, J.P.; Crowder, C.A.; Sorensen, D.N.; Bartmess, J.E.,
Gas-Phase Ion-Molecule Chemistry of Borate and Boronate Esters,
J. Am. Soc. Mass Spectrom., 1994, 5, 3, 169, https://doi.org/10.1016/1044-0305(94)85030-5
. [all data]
Stein, Rikkers, et al.
Stein, S.E.; Rikkers, J.M.; Brown, R.L.,
NIST Structure anmd Properties Database and Estimation Program, Ver. 1.1, NIST Standard Reference Database 25. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R.,
The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase,
J. Am. Chem. Soc., 1986, 108, 2853. [all data]
Bouchoux, Jaudon, et al., 1991
Bouchoux, G.; Jaudon, P.; Decouzon, M.; Gal, J.-F.; Maria, P.-C.,
Gas-Phase Acidity of Some alpha-keto Aldoximes: Experiment and Theory,
J. Phys. Org. Chem., 1991, 4, 5, 285, https://doi.org/10.1002/poc.610040505
. [all data]
Hankin, Krempp, et al., 1995
Hankin, J.A.; Krempp, M.; Damrauer, R.,
Gas-phase Chemistry of the Silaformamide Ion,
Organomet., 1995, 14, 6, 2652, https://doi.org/10.1021/om00006a011
. [all data]
Romer, Gatev, et al., 1998
Romer, B.; Gatev, G.G.; Zhong, M.; Brauman, J.I.,
Alpha-Stabilization by Silyl and Phosphino Substitution,
J. Am. Chem. Soc., 1998, 120, 12, 2919, https://doi.org/10.1021/ja970279s
. [all data]
Brinkman, Berger, et al., 1994
Brinkman, E.A.; Berger, S.; Brauman, J.I.,
alpha-Silyl-substituent stabilization of carbanions and silyl anions,
J. Am. Chem. Soc., 1994, 116, 18, 8304, https://doi.org/10.1021/ja00097a042
. [all data]
Haas, Giblin, et al., 1998
Haas, G.W.; Giblin, D.E.; Gross, M.L.,
The Mechanism and Thermodynamics of Transesterification of Acetate-Ester Enolates in the Gas Phase,
Int. J. Mass Spectrom. Ion Proc., 1998, 172, 1-2, 25, https://doi.org/10.1016/S0168-1176(97)83245-4
. [all data]
Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A.,
Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry,
Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C
. [all data]
Jones, Bernier, et al., 2007
Jones, C.M.; Bernier, M.; Carson, E.; Colyer, K.E.; Metz, R.; Pawlow, A.; Wischow, E.D.; Webb, I.; Andriole, E.J.; Poutsma, J.C.,
Gas-phase Acities of the 20 Protein Amino Acids,
Int. J. Mass Spectrom., 2007, 267, 1-3, 54-62, https://doi.org/10.1016/j.ijms.2007.02.018
. [all data]
Locke and McIver, 1983
Locke, M.J.; McIver, R.T., Jr.,
Effect of Solvation on the Acid/Base Properties of Glycine,
J. Am. Chem. Soc., 1983, 105, 4226. [all data]
Radisic, Xu, et al., 2002
Radisic, D.; Xu, S.J.; Bowen, K.H.,
Photoelectron spectroscopy of the anions, CH3NH- and (CH3)(2)N- and the anion complexes, H-(CH3NH2) and (CH3)(2)N-[(CH3)(2)NH),
Chem. Phys. Lett., 2002, 354, 1-2, 9-13, https://doi.org/10.1016/S0009-2614(01)01470-1
. [all data]
MacKay, Hemsworth, et al., 1976
MacKay, G.J.; Hemsworth, R.S.; Bohme, D.K.,
Absolute gas-phase acidities of CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N,
Can. J. Chem., 1976, 54, 1624. [all data]
Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F.,
Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids,
J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001
. [all data]
Koppel, Pikver, et al., 1981
Koppel, I.; Pikver, R.; Sugis, A.; Suurmaa, E.; Lippmaa, E.,
FTICR Study of Structure and Solvent Effects on Basicity of Some Anions in the Gas Phase,
Org. Reac., 1981, 18, 3. [all data]
Clair and McMahon, 1980
Clair, R.L.; McMahon, T.B.,
An ion cyclotron resonance study of base-induced elimination reactions of fluorinated alcohols and unimolecular loss of HF from chemically activated fluoroalkoxide ions,
Int. J. Mass Spectrom. Ion Phys., 1980, 33, 21. [all data]
Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G.,
Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase,
Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005
. [all data]
Oakes, Jones, et al., 1983
Oakes, J.M.; Jones, M.E.; Bierbaum, V.M.; Ellison, G.B.,
Photoelectron spectroscopy of CCO- and HCCO-,
J. Phys. Chem., 1983, 87, 4810. [all data]
Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P.,
Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria,
Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092
. [all data]
McLuckey, Cameron, et al., 1981
McLuckey, S.A.; Cameron, D.; Cooks, R.G.,
Proton affinities from the dissociation of proton bound dimers,
J. Am. Chem. Soc., 1981, 103, 1313. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Moran and Ellison, 1988
Moran, S.; Ellison, G.B.,
Photoelectron Spectroscopy of Sulfur Ions,
J. Phys. Chem., 1988, 92, 7, 1794, https://doi.org/10.1021/j100318a021
. [all data]
Ingemann and Nibbering, 1985
Ingemann, S.; Nibbering, N.M.M.,
Gas phase chemistry of alpha-thio carbanions,
Can. J. Chem., 1985, 62, 2273. [all data]
O'Hair, Bowie, et al., 1992
O'Hair, R.J.; Bowie, J.H.; Gronert, S.,
Gas Phase Acidity of the alpha-Amino Acids,
Int. J. Mass Spectrom. Ion Proc., 1992, 117, 23, https://doi.org/10.1016/0168-1176(92)80083-D
. [all data]
Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B.,
Acidity order of selected bronsted acids in the gas phase at 300K,
J. Am. Chem. Soc., 1972, 94, 5153. [all data]
Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D.,
The Nature and Analysis of Substituent Effects,
Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.