Hydrogen cation
- Formula: H+
- Molecular weight: 1.00739
- IUPAC Standard InChIKey: GPRLSGONYQIRFK-UHFFFAOYSA-N
- CAS Registry Number: 12408-02-5
- Chemical structure:
This structure is also available as a 2d Mol file - Isotopologues:
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 100, reactions 151 to 200, reactions 201 to 250, reactions 251 to 300, reactions 301 to 350, reactions 351 to 400, reactions 401 to 450, reactions 451 to 500, reactions 501 to 550, reactions 551 to 600, reactions 601 to 650, reactions 651 to 700, reactions 701 to 750, reactions 751 to 800, reactions 801 to 850, reactions 851 to 900, reactions 901 to 950, reactions 951 to 1000, reactions 1001 to 1050, reactions 1051 to 1100, reactions 1101 to 1150, reactions 1151 to 1200, reactions 1201 to 1250, reactions 1251 to 1300, reactions 1301 to 1350, reactions 1351 to 1375
- Gas phase ion energetics data
- Options:
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 101 to 150
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1567. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1568. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1539. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1540. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
C5H11O- + =
By formula: C5H11O- + H+ = C5H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1561. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1561. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1533. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1556. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1556. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1528. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1528. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
C3HN2- + =
By formula: C3HN2- + H+ = C3H2N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1405. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1406. ± 11. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1373. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1373. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
ΔrG° | 1376. ± 8.4 | kJ/mol | IMRE | Taft, Abboud, et al., 1988 | gas phase; Revised: 91TAF |
C6H9O- + =
By formula: C6H9O- + H+ = C6H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1533. ± 8.4 | kJ/mol | D-EA | Brinkman, Berger, et al., 1993 | gas phase |
ΔrH° | 1531. ± 9.6 | kJ/mol | D-EA | Zimmerman, Jackson, et al., 1978 | gas phase |
ΔrH° | 1544. ± 18. | kJ/mol | G+TS | Brickhouse and Squires, 1988 | gas phase; Between acetone, Me2C=NOH |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1501. ± 9.6 | kJ/mol | H-TS | Brinkman, Berger, et al., 1993 | gas phase |
ΔrG° | 1498. ± 11. | kJ/mol | H-TS | Zimmerman, Jackson, et al., 1978 | gas phase |
ΔrG° | 1511. ± 17. | kJ/mol | IMRB | Brickhouse and Squires, 1988 | gas phase; Between acetone, Me2C=NOH |
H2N- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1688.0 ± 1.2 | kJ/mol | D-EA | Wickham-Jones, Ervin, et al., 1989 | gas phase |
ΔrH° | 1688.5 ± 3.3 | kJ/mol | G+TS | MacKay, Hemsworth, et al., 1976 | gas phase |
ΔrH° | 1683.2 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; HCrO3(t); ; ΔS(EA)=6.6 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1656.8 ± 1.6 | kJ/mol | H-TS | Wickham-Jones, Ervin, et al., 1989 | gas phase |
ΔrG° | 1657.3 ± 2.9 | kJ/mol | IMRE | MacKay, Hemsworth, et al., 1976 | gas phase |
ΔrG° | 1654.4 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; HCrO3(t); ; ΔS(EA)=6.6 |
By formula: ClO4- + H+ = HClO4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1255. ± 24. | kJ/mol | IMRB | Meyer and Kass, 2010 | gas phase |
ΔrH° | 1220. ± 50. | kJ/mol | Acid | Marcus, 1987 | gas phase; Acidity seems too strong by ca. 10 kcal/mol. Other lattice energetics ( Mallouk, Rosenthal, et al., 1984, Finch, Gates, et al., 1977) are also too stable for anions. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1200. ± 50. | kJ/mol | H-TS | Marcus, 1987 | gas phase; Acidity seems too strong by ca. 10 kcal/mol. Other lattice energetics ( Mallouk, Rosenthal, et al., 1984, Finch, Gates, et al., 1977) are also too stable for anions. |
C7H7O- + =
By formula: C7H7O- + H+ = C7H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1457. ± 5.0 | kJ/mol | CIDC | Angel and Ervin, 2006 | gas phase |
ΔrH° | 1462. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1467. ± 9.6 | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1434. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1438. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase |
C6H- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1501. ± 21. | kJ/mol | D-EA | Garand, Yacovitch, et al., 2010 | gas phase; Calns says linear H-terminated structure for anion |
ΔrH° | 1486. ± 13. | kJ/mol | G+TS | Natterer, Koch, et al., 1994 | gas phase; Acidity between (Me3Si)2NH and 4-Me-pyrazole |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1467. ± 21. | kJ/mol | H-TS | Garand, Yacovitch, et al., 2010 | gas phase; Calns says linear H-terminated structure for anion |
ΔrG° | 1452. ± 13. | kJ/mol | IMRB | Natterer, Koch, et al., 1994 | gas phase; Acidity between (Me3Si)2NH and 4-Me-pyrazole |
C4H7O- + =
By formula: C4H7O- + H+ = C4H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1536. ± 12. | kJ/mol | G+TS | Chyall, Brickhouse, et al., 1994 | gas phase; Primary and secondary sites are of equal acidity by equilibration. Acidity from Zimmerman, Reed, et al., 1977 |
ΔrH° | 1545. ± 10. | kJ/mol | D-EA | Zimmerman, Reed, et al., 1977 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1508. ± 11. | kJ/mol | IMRE | Chyall, Brickhouse, et al., 1994 | gas phase; Primary and secondary sites are of equal acidity by equilibration. Acidity from Zimmerman, Reed, et al., 1977 |
ΔrG° | 1516. ± 11. | kJ/mol | H-TS | Zimmerman, Reed, et al., 1977 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1481. ± 9.2 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1485. ± 12. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
ΔrH° | 1495. ± 8.4 | kJ/mol | D-EA | Engelking and Lineberger, 1977 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1455. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1459. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
C4H9- + =
By formula: C4H9- + H+ = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1739. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong |
ΔrH° | 1745. ± 20. | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1703. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong |
ΔrG° | 1709. ± 21. | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase |
C7H15O- + =
By formula: C7H15O- + H+ = C7H16O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1547. ± 8.4 | kJ/mol | D-EA | Mihalick, Gatev, et al., 1996 | gas phase; Derived BDE: 104.2±2.8 kcal/mol |
ΔrH° | 1548. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1520. ± 9.2 | kJ/mol | H-TS | Mihalick, Gatev, et al., 1996 | gas phase; Derived BDE: 104.2±2.8 kcal/mol |
ΔrG° | 1520. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
HTe- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1385. ± 8.8 | kJ/mol | G+TS | Gal, Maria, et al., 1989 | gas phase |
ΔrH° | 1386.3 ± 1.7 | kJ/mol | D-EA | Freidhoff, Snodgrass, et al., 1986 | gas phase |
ΔrH° | 1393.3 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; ScBr4-.; ; ΔS(EA)=8.4 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1360. ± 8.4 | kJ/mol | IMRE | Gal, Maria, et al., 1989 | gas phase |
ΔrG° | 1361.2 ± 3.0 | kJ/mol | H-TS | Freidhoff, Snodgrass, et al., 1986 | gas phase |
ΔrG° | 1366.9 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; ScBr4-.; ; ΔS(EA)=8.4 |
C8H7O- + =
By formula: C8H7O- + H+ = C8H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1512. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1515. ± 11. | kJ/mol | D-EA | Zimmerman, Reed, et al., 1977 | gas phase |
ΔrH° | 1516. ± 11. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1483. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1487. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
C8H6N- + =
By formula: C8H6N- + H+ = C8H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1472. ± 10. | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
ΔrH° | 1461. ± 8.8 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1440. ± 8.4 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
ΔrG° | 1431. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase |
C5H5N2- + =
By formula: C5H5N2- + H+ = C5H6N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1519. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
ΔrH° | 1518. ± 8.8 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1489. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
ΔrG° | 1488. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase |
CH2F3Si- + =
By formula: CH2F3Si- + H+ = CH3F3Si
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1542. ± 16. | kJ/mol | G+TS | Allison and McMahon, 1990 | gas phase; Between acetone and acetaldehyde. In conflict with Campanaro, Marvin, et al., 1988 |
ΔrH° | 1555. ± 19. | kJ/mol | G+TS | Campanaro, Marvin, et al., 1988 | gas phase; Between HF and acetone |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1508. ± 16. | kJ/mol | IMRB | Allison and McMahon, 1990 | gas phase; Between acetone and acetaldehyde. In conflict with Campanaro, Marvin, et al., 1988 |
ΔrG° | 1522. ± 19. | kJ/mol | IMRB | Campanaro, Marvin, et al., 1988 | gas phase; Between HF and acetone |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1668. ± 6.3 | kJ/mol | G+TS | Born, Ingemann, et al., 1994 | gas phase; Between EtNH2 and Me2NH |
ΔrH° | 1650. ± 22. | kJ/mol | D-EA | Gilles, Ervin, et al., 1992 | gas phase; Triplet state of neutral: 14.9±0.4 kcal/mol higher than singlet |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1634. ± 5.9 | kJ/mol | IMRB | Born, Ingemann, et al., 1994 | gas phase; Between EtNH2 and Me2NH |
ΔrG° | 1616. ± 22. | kJ/mol | H-TS | Gilles, Ervin, et al., 1992 | gas phase; Triplet state of neutral: 14.9±0.4 kcal/mol higher than singlet |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1482. ± 10. | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
ΔrH° | 1472. ± 8.8 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1451. ± 8.4 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
ΔrG° | 1442. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase |
C6H3F2- + =
By formula: C6H3F2- + H+ = C6H4F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1580. ± 9.2 | kJ/mol | G+TS | Buker, Nibbering, et al., 1997 | gas phase |
ΔrH° | 1582. ± 13. | kJ/mol | G+TS | Briscese and Riveros, 1975 | gas phase; Between EtO-, iPrO-; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1546. ± 8.4 | kJ/mol | IMRE | Buker, Nibbering, et al., 1997 | gas phase |
ΔrG° | 1547. ± 13. | kJ/mol | IMRB | Briscese and Riveros, 1975 | gas phase; Between EtO-, iPrO-; value altered from reference due to change in acidity scale |
C6H4NO2- + =
By formula: C6H4NO2- + H+ = C6H5NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1577. ± 13. | kJ/mol | G+TS | Cheng and Grabowski, 1989 | gas phase; between EtOH, iPrOH |
ΔrH° | 1482. ± 13. | kJ/mol | G+TS | Meot-ner and Kafafi, 1988 | gas phase; acidity stronger than all levels of computation by 25 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1545. ± 13. | kJ/mol | IMRB | Cheng and Grabowski, 1989 | gas phase; between EtOH, iPrOH |
ΔrG° | 1450. ± 13. | kJ/mol | IMRB | Meot-ner and Kafafi, 1988 | gas phase; acidity stronger than all levels of computation by 25 kcal/mol |
By formula: N3O4- + H+ = HN3O4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1286. ± 30. | kJ/mol | G+TS | Schmitt, Krempp, et al., 1992 | gas phase; Acidity between H2SO4, HNO3..NO3-. Reported: G: 297±7 kcal/mol. Readjusted to newer acidities - JEB; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1257. ± 29. | kJ/mol | IMRB | Schmitt, Krempp, et al., 1992 | gas phase; Acidity between H2SO4, HNO3..NO3-. Reported: G: 297±7 kcal/mol. Readjusted to newer acidities - JEB; value altered from reference due to change in acidity scale |
C3H5O- + =
By formula: C3H5O- + H+ = C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1563. ± 12. | kJ/mol | G+TS | Graul, Schnute, et al., 1990 | gas phase |
ΔrH° | 1400. ± 50. | kJ/mol | Acid | Kuhn, Fenzlaff, et al., 1988 | gas phase; From CH2=CHCH2OH, AP 0.9 eV; est. thermo = 2.5 eV |
ΔrH° | 1409. ± 8.4 | kJ/mol | D-EA | Bouby, Compton, et al., 1968 | gas phase; EA probably 2 eV less |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1534. ± 12. | kJ/mol | CIDC | Graul, Schnute, et al., 1990 | gas phase |
ΔrG° | 1380. ± 8.8 | kJ/mol | H-TS | Bouby, Compton, et al., 1968 | gas phase; EA probably 2 eV less |
C7H13O- + =
By formula: C7H13O- + H+ = C7H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1554. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1551. ± 9.2 | kJ/mol | G+TS | Majumdar, Clairet, et al., 1992 | gas phase; Acidity adjusted to 1987 acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1527. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1523. ± 8.8 | kJ/mol | CIDC | Majumdar, Clairet, et al., 1992 | gas phase; Acidity adjusted to 1987 acidity scale |
C7H13O- + =
By formula: C7H13O- + H+ = C7H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1559. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1555. ± 9.2 | kJ/mol | G+TS | Majumdar, Clairet, et al., 1992 | gas phase; Acidity adjusted to 1987 acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1531. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1528. ± 8.8 | kJ/mol | CIDC | Majumdar, Clairet, et al., 1992 | gas phase; Acidity adjusted to 1987 acidity scale |
C7H13O- + =
By formula: C7H13O- + H+ = C7H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1563. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1560. ± 9.2 | kJ/mol | G+TS | Majumdar, Clairet, et al., 1992 | gas phase; Acidity adjusted to 1987 acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1536. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1532. ± 8.8 | kJ/mol | CIDC | Majumdar, Clairet, et al., 1992 | gas phase; Acidity adjusted to 1987 acidity scale |
C7H13O- + =
By formula: C7H13O- + H+ = C7H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1559. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1555. ± 9.2 | kJ/mol | G+TS | Majumdar, Clairet, et al., 1992 | gas phase; Acidity adjusted to 1987 acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1531. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1528. ± 8.8 | kJ/mol | CIDC | Majumdar, Clairet, et al., 1992 | gas phase; Acidity adjusted to 1987 acidity scale |
HO2- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1575.3 ± 2.1 | kJ/mol | G+TS | Ramond, Blanksby, et al., 2002 | gas phase; versus HCCH |
ΔrH° | 1572. ± 8.8 | kJ/mol | G+TS | Bierbaum, Schmidt, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1546.0 ± 1.7 | kJ/mol | IMRE | Ramond, Blanksby, et al., 2002 | gas phase; versus HCCH |
ΔrG° | 1542. ± 8.4 | kJ/mol | IMRE | Bierbaum, Schmidt, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
C2F6NO4S2- + = C2HF6NO4S2
By formula: C2F6NO4S2- + H+ = C2HF6NO4S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1227. ± 9.6 | kJ/mol | G+TS | Leito, Raamat, et al., 2009 | gas phase |
ΔrH° | 1249. ± 9.6 | kJ/mol | G+TS | Koppel, Koppel, et al., 1998 | gas phase; corrected from typo in literature: I. Koppel, private Communication, 1998 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1199. ± 8.4 | kJ/mol | IMRE | Leito, Raamat, et al., 2009 | gas phase |
ΔrG° | 1221. ± 8.4 | kJ/mol | IMRE | Koppel, Koppel, et al., 1998 | gas phase; corrected from typo in literature: I. Koppel, private Communication, 1998 |
C3H4Cl- + =
By formula: C3H4Cl- + H+ = C3H5Cl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1590. ± 17. | kJ/mol | G+TS | Dahlke and Kass, 1991 | gas phase; Between MeOH, EtOH. Reprotonation site uncertain |
ΔrH° | 1571. ± 8.8 | kJ/mol | G+TS | Poutsma, Nash, et al., 1997 | gas phase; Between iPrOH, HF, near tBuOH |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1559. ± 17. | kJ/mol | IMRB | Dahlke and Kass, 1991 | gas phase; Between MeOH, EtOH. Reprotonation site uncertain |
ΔrG° | 1540. ± 8.4 | kJ/mol | IMRB | Poutsma, Nash, et al., 1997 | gas phase; Between iPrOH, HF, near tBuOH |
C6H4Br- + =
By formula: C6H4Br- + H+ = C6H5Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1620. ± 10. | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
ΔrH° | 1607. ± 8.8 | kJ/mol | G+TS | Linnert and Riveros, 1994 | gas phase; Acidity between quinoline and benzonitrile |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1586. ± 11. | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes |
ΔrG° | 1572. ± 8.4 | kJ/mol | IMRB | Linnert and Riveros, 1994 | gas phase; Acidity between quinoline and benzonitrile |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1493. ± 13. | kJ/mol | G+TS | DePuy and Bierbaum, 1981 | gas phase; Between CF3CH2OH and H2S, comparable to MeSH; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1467. ± 13. | kJ/mol | IMRB | DePuy and Bierbaum, 1981 | gas phase; Between CF3CH2OH and H2S, comparable to MeSH; value altered from reference due to change in acidity scale |
ΔrG° | 1480. ± 13. | kJ/mol | IMRB | Bierbaum, Grabowski, et al., 1984 | gas phase; NH2- + COS ->. |
C2H4FO- + =
By formula: C2H4FO- + H+ = C2H5FO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1553. ± 12. | kJ/mol | G+TS | Graul, Schnute, et al., 1990 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1525. ± 12. | kJ/mol | CIDC | Graul, Schnute, et al., 1990 | gas phase |
ΔrG° | 1521. ± 15. | kJ/mol | IMRB | Clair and McMahon, 1980 | gas phase; Between HF and acetone; value altered from reference due to change in acidity scale |
ΔrG° | 1527. ± 14. | kJ/mol | IMRB | Dawson and Jennings, 1977 | gas phase; Between HF and acetone; value altered from reference due to change in acidity scale |
C6H3F2- + =
By formula: C6H3F2- + H+ = C6H4F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1591. ± 8.8 | kJ/mol | G+TS | Buker, Nibbering, et al., 1997 | gas phase |
ΔrH° | 1589. ± 13. | kJ/mol | G+TS | Briscese and Riveros, 1975 | gas phase; < MeOH, <= EtOH; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1557. ± 8.4 | kJ/mol | IMRE | Buker, Nibbering, et al., 1997 | gas phase |
ΔrG° | 1555. ± 13. | kJ/mol | IMRB | Briscese and Riveros, 1975 | gas phase; < MeOH, <= EtOH; value altered from reference due to change in acidity scale |
C2H5OSi- + =
By formula: C2H5OSi- + H+ = C2H6OSi
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1521. ± 17. | kJ/mol | G+TS | Damrauer and Krempp, 1990 | gas phase; between CF3CH2OH and CH3CHO in acidity |
ΔrH° | 1522. ± 17. | kJ/mol | G+TS | Froelicher, Freiser, et al., 1984 | gas phase; Between aniline, CF3CH2OH in acidity |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1492. ± 17. | kJ/mol | IMRB | Damrauer and Krempp, 1990 | gas phase; between CF3CH2OH and CH3CHO in acidity |
ΔrG° | 1492. ± 17. | kJ/mol | IMRB | Froelicher, Freiser, et al., 1984 | gas phase; Between aniline, CF3CH2OH in acidity |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1539. ± 40. | kJ/mol | D-EA | Desai, Wu, et al., 1996 | gas phase |
ΔrH° | 1505. ± 17. | kJ/mol | G+TS | Damrauer, Krempp, et al., 1991 | gas phase; Between CF3CH2OH, pyrrole. Calculations imply that the acid is AlOH, not HAlO |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1509. ± 41. | kJ/mol | H-TS | Desai, Wu, et al., 1996 | gas phase |
ΔrG° | 1475. ± 17. | kJ/mol | IMRB | Damrauer, Krempp, et al., 1991 | gas phase; Between CF3CH2OH, pyrrole. Calculations imply that the acid is AlOH, not HAlO |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1428.8 ± 3.0 | kJ/mol | D-EA | Yang, Kiran, et al., 2004 | gas phase |
ΔrH° | 1439. ± 13. | kJ/mol | G+TS | Pellerite, Jackson, et al., 1981 | gas phase; Acidity near HCO2H |
ΔrH° | 1418. ± 21. | kJ/mol | Acid | Franklin, Dibeler, et al., 1958 | gas phase; From MeN3 and HN3 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1403.9 ± 3.4 | kJ/mol | H-TS | Yang, Kiran, et al., 2004 | gas phase |
ΔrG° | 1414. ± 12. | kJ/mol | IMRB | Pellerite, Jackson, et al., 1981 | gas phase; Acidity near HCO2H |
C2H5N2O- + =
By formula: C2H5N2O- + H+ = C2H6N2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1594. ± 8.8 | kJ/mol | G+TS | Ingemann and Nibbering, 1985 | gas phase; The experimental dHf(Me2NNO) { Korsunskii, Pepekin, et al., 1967} is incorrect: JEB, manuscript in preparation; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1564. ± 8.4 | kJ/mol | IMRE | Ingemann and Nibbering, 1985 | gas phase; The experimental dHf(Me2NNO) { Korsunskii, Pepekin, et al., 1967} is incorrect: JEB, manuscript in preparation; value altered from reference due to change in acidity scale |
By formula: C3H9Ge- + H+ = C3H10Ge
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1543. ± 8.8 | kJ/mol | D-EA | Brinkman, Salomon, et al., 1995 | gas phase; D-EA cycle implies BDE(Me3Ge-H) = 80.2 |
ΔrH° | 1514. ± 13. | kJ/mol | G+TS | Brinkman, Salomon, et al., 1995 | gas phase; Acidity between mF- and oF-aniline. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1512. ± 9.2 | kJ/mol | H-TS | Brinkman, Salomon, et al., 1995 | gas phase; D-EA cycle implies BDE(Me3Ge-H) = 80.2 |
ΔrG° | 1484. ± 13. | kJ/mol | IMRB | Brinkman, Salomon, et al., 1995 | gas phase; Acidity between mF- and oF-aniline. |
C4H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1644. ± 7.5 | kJ/mol | Endo | Wenthold, Hu, et al., 1999 | gas phase |
ΔrH° | 1619. ± 8.4 | kJ/mol | D-EA | Wenthold, Polak, et al., 1996 | gas phase |
ΔrH° | 1633. ± 9.6 | kJ/mol | G+TS | Bartmess and Burnham, 1984 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1613. ± 7.9 | kJ/mol | H-TS | Wenthold, Hu, et al., 1999 | gas phase |
ΔrG° | 1588. ± 8.8 | kJ/mol | H-TS | Wenthold, Polak, et al., 1996 | gas phase |
ΔrG° | 1602. ± 9.2 | kJ/mol | IMRE | Bartmess and Burnham, 1984 | gas phase |
By formula: CHOS- + H+ = CH2OS
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1467. ± 13. | kJ/mol | G+TS | Kass and DePuy, 1985 | gas phase; This acidity value, and the HOF(HCOSH), appear to have been estimates, and should not be taken as experimental ones - JEB, 2006,G3MP2B3: 334 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1435. ± 13. | kJ/mol | IMRB | Kass and DePuy, 1985 | gas phase; This acidity value, and the HOF(HCOSH), appear to have been estimates, and should not be taken as experimental ones - JEB, 2006,G3MP2B3: 334 kcal/mol |
C2H4NO2- + =
By formula: C2H4NO2- + H+ = C2H5NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1434. ± 9.2 | kJ/mol | CIDC | Jones, Bernier, et al., 2007 | gas phase |
ΔrH° | 1429. ± 8.8 | kJ/mol | G+TS | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrH° | 1433. ± 8.8 | kJ/mol | G+TS | Locke and McIver, 1983 | gas phase |
ΔrH° | 1410. ± 5.9 | kJ/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1400. ± 8.4 | kJ/mol | IMRE | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrG° | 1404. ± 8.4 | kJ/mol | IMRE | Locke and McIver, 1983 | gas phase |
C6H3F2- + =
By formula: C6H3F2- + H+ = C6H4F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1565. ± 8.8 | kJ/mol | G+TS | Buker, Nibbering, et al., 1997 | gas phase |
ΔrH° | <1575.5 ± 1.3 | kJ/mol | G+TS | Briscese and Riveros, 1975 | gas phase; < iPrOH; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 8.4 | kJ/mol | IMRE | Buker, Nibbering, et al., 1997 | gas phase |
ΔrG° | <1543.1 | kJ/mol | IMRB | Briscese and Riveros, 1975 | gas phase; < iPrOH; value altered from reference due to change in acidity scale |
C4H3O- + =
By formula: C4H3O- + H+ = C4H4O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1636.2 ± 1.5 | kJ/mol | G+TS | Grabowski and Owusu | gas phase |
ΔrH° | 1624. ± 13. | kJ/mol | G+TS | DePuy, Kass, et al., 1988 | gas phase; Order:H2O < furan < 2-Me-furan < MeOH. D exchange indicates anion at C-2. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1602.1 ± 0.84 | kJ/mol | IMRE | Grabowski and Owusu | gas phase |
ΔrG° | 1590. ± 13. | kJ/mol | IMRB | DePuy, Kass, et al., 1988 | gas phase; Order:H2O < furan < 2-Me-furan < MeOH. D exchange indicates anion at C-2. |
HO- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1633.141 ± 0.042 | kJ/mol | D-EA | Smith, Kim, et al., 1997 | gas phase; Given: 14741.02(3) cm-1. dHacid(0K) = 389.11±0.014 |
ΔrH° | 1622.1 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnBr3-; ; ΔS(EA)=1.7 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1605.57 ± 0.25 | kJ/mol | H-TS | Smith, Kim, et al., 1997 | gas phase; Given: 14741.02(3) cm-1. dHacid(0K) = 389.11±0.014 |
ΔrG° | 1594.5 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnBr3-; ; ΔS(EA)=1.7 |
C2H2N- + =
By formula: C2H2N- + H+ = C2H3N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1592. ± 8.8 | kJ/mol | G+TS | Matimba, Crabbendam, et al., 1992 | gas phase |
ΔrH° | 1567. ± 8.8 | kJ/mol | G+TS | Filley, DePuy, et al., 1987 | gas phase; Matimba, Crabbendam, et al., 1992 indicate that CN- loss interfered with equilibrium here. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1561. ± 8.4 | kJ/mol | IMRE | Matimba, Crabbendam, et al., 1992 | gas phase |
ΔrG° | 1536. ± 8.4 | kJ/mol | IMRE | Filley, DePuy, et al., 1987 | gas phase; Matimba, Crabbendam, et al., 1992 indicate that CN- loss interfered with equilibrium here. |
S- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1465.03 ± 0.29 | kJ/mol | D-EA | Blondel, Chaibi, et al., 2005 | gas phase; (32)S: 2.0771040(9) eV: revised analysis of Blondel, Delsart, et al., 2001 |
ΔrH° | 1465. ± 12. | kJ/mol | Endo | Rempala and Ervin, 2000 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1441.8 ± 0.79 | kJ/mol | H-TS | Blondel, Chaibi, et al., 2005 | gas phase; (32)S: 2.0771040(9) eV: revised analysis of Blondel, Delsart, et al., 2001 |
ΔrG° | 1442. ± 13. | kJ/mol | H-TS | Rempala and Ervin, 2000 | gas phase |
By formula: C3H3N2- + H+ = C3H4N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1464.1 ± 3.0 | kJ/mol | G+TS | Gianola, Ichino, et al., 2005 | gas phase |
ΔrH° | 1465. ± 8.8 | kJ/mol | G+TS | Taft, Anvia, et al., 1986 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1433.4 ± 1.7 | kJ/mol | IMRE | Gianola, Ichino, et al., 2005 | gas phase |
ΔrG° | 1434. ± 8.4 | kJ/mol | IMRE | Taft, Anvia, et al., 1986 | gas phase; value altered from reference due to change in acidity scale |
C9H4N3O2- + =
By formula: C9H4N3O2- + H+ = C9H5N3O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1277. ± 9.6 | kJ/mol | G+TS | Koppel, Taft, et al., 1994 | gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by at least 1.3 kcal/mol, and possibly 5.3, due to problems in the ladder at dGacid=299 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1253. ± 8.4 | kJ/mol | IMRE | Koppel, Taft, et al., 1994 | gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by at least 1.3 kcal/mol, and possibly 5.3, due to problems in the ladder at dGacid=299 |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Taft, Abboud, et al., 1988
Taft, R.W.; Abboud, J.L.M.; Anvia, F.; Berthelot, M.; Fujio, M.; Gal, J.-F.; Headley, A.D.; Henderson, W.G.,
Regarding the Inherent Dependence of Resonance Effects of Strongly Conjugated Substituents on Electron Demand,
J. Am. Chem. Soc., 1988, 110, 6, 1797, https://doi.org/10.1021/ja00214a023
. [all data]
Brinkman, Berger, et al., 1993
Brinkman, E.A.; Berger, S.; Marks, J.; Brauman, J.I.,
Molecular Rotation and the Observation of Dipole-Bound States of Anions,
J. Chem. Phys., 1993, 99, 10, 7586, https://doi.org/10.1063/1.465688
. [all data]
Zimmerman, Jackson, et al., 1978
Zimmerman, A.H.; Jackson, R.L.; Janousek, B.K.; Brauman, J.J.,
Electron photodetachment from cyclic enolate anions in the gas phase: Electron affinities of cyclic enolate radicals,
J. Am. Chem. Soc., 1978, 100, 4674. [all data]
Brickhouse and Squires, 1988
Brickhouse, M.D.; Squires, R.R.,
Gas Phase Bronsted vs. Lewis Acid-Base Reactions of 6,6-Dimethylfulvene. A Sensitive Probe of the Electronic Structures of Organic Anions,
J. Am. Chem. Soc., 1988, 110, 9, 2706, https://doi.org/10.1021/ja00217a002
. [all data]
Wickham-Jones, Ervin, et al., 1989
Wickham-Jones, C.T.; Ervin, K.M.; Ellison, G.B.; Lineberger, W.C.,
NH2 Electron Affinity,
J. Chem. Phys., 1989, 91, 4, 2762, https://doi.org/10.1063/1.456994
. [all data]
MacKay, Hemsworth, et al., 1976
MacKay, G.J.; Hemsworth, R.S.; Bohme, D.K.,
Absolute gas-phase acidities of CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N,
Can. J. Chem., 1976, 54, 1624. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Meyer and Kass, 2010
Meyer, M.M.; Kass, S.R.,
Experimental and Theoretical Gas-Phase Acidities, Bond Dissociation Energies, and Heats of Formation of HClOx, x=1-4,
J. Phys. Chem. A, 2010, 114, 12, 4086-4092, https://doi.org/10.1021/jp100888k
. [all data]
Marcus, 1987
Marcus, Y.,
The Thermodynamics of Solvation of Ions. 2. The Enthalpy of Hydration at 298.15K,
J. Chem. Soc. Farad. Trans. I, 1987, 83, 2, 339, https://doi.org/10.1039/f19878300339
. [all data]
Mallouk, Rosenthal, et al., 1984
Mallouk, T.E.; Rosenthal, G.L.; Muller, G.; Brusasco, R.; Bartlett, N.,
Fluoride ion affinities of GeF4 and BF4 from thermodynamic and structural data for (SF2)2GeF6, ClO2GeF5, and ClO2BF4,
Inorg. Chem., 1984, 23, 3167. [all data]
Finch, Gates, et al., 1977
Finch, A.; Gates, P.N.; Peake, S.J.,
Thermochemistry of polyhalides. III. Cesium and rubidium tetrachloroiodates,
J. Inorg. Nucl. Chem., 1977, 39, 2135. [all data]
Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M.,
Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid,
J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426
. [all data]
Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B.,
Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria,
J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032
. [all data]
Garand, Yacovitch, et al., 2010
Garand, E.; Yacovitch, T.I.; Zhou, J.; Sheehan, S.M.; Neumark, D.M.,
Slow photoelectron velocity-map imaging of the CnH- (n=5-9) anions,
Chem. Sci., 2010, 1, 2, 192-201, https://doi.org/10.1039/c0sc00164c
. [all data]
Natterer, Koch, et al., 1994
Natterer, J.; Koch, W.; Schroder, D.; Goldberg, N.; Schwarz, H.,
Combined experimental and theoretical study of the C-H bond strength and the gas phase acidity of triacetylene, C6H2, and the electron affinity of the C6H. radical,
Chem. Phys. Lett., 1994, 229, 4-5, 429, https://doi.org/10.1016/0009-2614(94)01075-7
. [all data]
Chyall, Brickhouse, et al., 1994
Chyall, L.J.; Brickhouse, M.D.; Schnute, M.E.; Squires, R.R.,
Kinetic versus thermodynamic control in the deprotonation of unsymmetrical ketones in the gas phase,
J. Am. Chem. Soc., 1994, 116, 19, 8681, https://doi.org/10.1021/ja00098a031
. [all data]
Zimmerman, Reed, et al., 1977
Zimmerman, A.H.; Reed, K.J.; Brauman, J.I.,
Photodetachment of electrons from enolate anions. Gas phase electron affinities of enolate radicals,
J. Am. Chem. Soc., 1977, 99, 7203. [all data]
Engelking and Lineberger, 1977
Engelking, P.C.; Lineberger, W.C.,
Laser photoelectron spectrometry of C5H5-: A determination of the electron affinity and Jahn-Teller coupling in cyclopentadienyl,
J. Chem. Phys., 1977, 67, 1412. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Seetula, Russell, et al., 1990
Seetula, J.A.; Russell, J.J.; Gutman, D.,
Kinetics and Thermochemistry of the Reactions of Alkyl Radicals with HI: A Reconciliation of the Alkyl Radical Heats of Formation,
J. Am. Chem. Soc., 1990, 112, 4, 1347, https://doi.org/10.1021/ja00160a009
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Mihalick, Gatev, et al., 1996
Mihalick, J.E.; Gatev, G.G.; Brauman, J.I.,
Electron Photodetachment Spectroscopy of Solvated Anions: RO.HF- or ROH.F-?,
J. Am. Chem. Soc., 1996, 118, 49, 12424, https://doi.org/10.1021/ja954202k
. [all data]
Gal, Maria, et al., 1989
Gal, J.-F.; Maria, P.-C.; Decouzon, M.,
The Gas-Phase Acidity and Bond Dissociation Energies of Hydrogen Telluride,
Int. J. Mass Spectrom. Ion Proc., 1989, 93, 1, 87, https://doi.org/10.1016/0168-1176(89)83076-9
. [all data]
Freidhoff, Snodgrass, et al., 1986
Freidhoff, C.B.; Snodgrass, J.T.; Coe, J.V.; McHugh, K.M.; Bowen, K.H.,
Negative ion photoelectron spectroscopy of TeH-,
J. Chem. Phys., 1986, 84, 1051. [all data]
Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A.,
Ionic Probes of Aromaticity in Annelated Rings,
J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001
. [all data]
Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B.,
Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine,
J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z
. [all data]
Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G.,
Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase,
Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005
. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Allison and McMahon, 1990
Allison, C.E.; McMahon, T.B.,
How Strong is the Si=C Bond in Fluoro- and Methyl Substituted Silaethylenes? An Experimental Determination of Pi Bond Strengths,
J. Am. Chem. Soc., 1990, 112, 5, 1672, https://doi.org/10.1021/ja00161a002
. [all data]
Campanaro, Marvin, et al., 1988
Campanaro, A.; Marvin, C.H.; Morehouse, S.P.; McMahon, T.B.,
A Gas-phase Anionic Analog of the Wittig Reaction. An Ion Cyclotron Resonance Study of the Gas Phase Ion Chemistry of Silyl Carbanions.,
Org. Mass Spectrom., 1988, 23, 9, 663, https://doi.org/10.1002/oms.1210230907
. [all data]
Born, Ingemann, et al., 1994
Born, M.; Ingemann, S.; Nibbering, N.M.M.,
Heats of formation of mono-halogen-substituted carbenes. Stability and reactivity of CHX(center dot-) (X=F, Cl, Pr, and I) radical anions,
J. Am. Chem. Soc., 1994, 116, 16, 7210, https://doi.org/10.1021/ja00095a025
. [all data]
Gilles, Ervin, et al., 1992
Gilles, M.K.; Ervin, K.M.; Ho, J.; Lineberger, W.C.,
Negative Ion Photoelectron Spectroscopy of HCF-, HCCl-, HCBr-, and HCI- - Photoelectron Angular Distributions and Neutral Triplet Excitation,
J. Phys. Chem., 1992, 96, 3, 1130, https://doi.org/10.1021/j100182a021
. [all data]
Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M.,
Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution,
Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3
. [all data]
Briscese and Riveros, 1975
Briscese, S.M.J.; Riveros, J.M.,
Gas phase nucleophilic reactions of aromatic systems,
J. Am. Chem. Soc., 1975, 97, 230. [all data]
Cheng and Grabowski, 1989
Cheng, X.; Grabowski, J.J.,
Gas-phase Acidity of Nitrobenzene from Flowing Afterglow Bracketing Studies,
Rapid Commun. Mass Spectrom., 1989, 3, 2, 34-36, https://doi.org/10.1002/rcm.1290030207
. [all data]
Schmitt, Krempp, et al., 1992
Schmitt, R.J.; Krempp, M.; Bierbaum, V.M.,
Gas Phase Chemistry of Dinitramide and Nitroacetylide Ions,
Int. J. Mass Spectrom. Ion Proc., 1992, 117, 621, https://doi.org/10.1016/0168-1176(92)80116-I
. [all data]
Graul, Schnute, et al., 1990
Graul, S.T.; Schnute, M.E.; Squires, R.R.,
Gas-Phase Acidities of Carboxylic Acids and Alcohols from Collision-Induced Dissociation of Dimer Cluster Ions,
Int. J. Mass Spectrom. Ion Proc., 1990, 96, 2, 181, https://doi.org/10.1016/0168-1176(90)87028-F
. [all data]
Kuhn, Fenzlaff, et al., 1988
Kuhn, A.; Fenzlaff, H.-P.; Illenberger, E.,
Formation and Dissociation of Negative Ion Resonances in Methanol and Allyl Alcohol,
J. Chem. Phys., 1988, 88, 12, 7453, https://doi.org/10.1063/1.454309
. [all data]
Bouby, Compton, et al., 1968
Bouby, L.; Compton, R.N.; Souleyrol, A.,
Formation d'ions negatifs dans l'alcool allylique et l'acroleine.,
Comptes Rendues. Acad. Sc. Paris, 1968, 266, 1250. [all data]
Majumdar, Clairet, et al., 1992
Majumdar, T.K.; Clairet, F.; Tabet, J.C.; Cooks, R.G.,
PAs of halogenated uridines,
J. Am. Chem . Soc., 1992, 114, 2897. [all data]
Ramond, Blanksby, et al., 2002
Ramond, T.M.; Blanksby, S.J.; Kato, S.; Bierbaum, V.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C.; Elliso,
Heat of formation of the hydroperoxyl radical HOO via negative ion studies,
J. Phys. Chem. A, 2002, 106, 42, 9641-9647, https://doi.org/10.1021/jp014614h
. [all data]
Bierbaum, Schmidt, et al., 1981
Bierbaum, V.M.; Schmidt, R.J.; DePuy, C.H.; Mead, R.H.; Schulz, P.A.; Lineberger, W.C.,
Reactions of carbanions with triplet and singlet molecular oxygen,
J. Am. Chem. Soc., 1981, 103, 6262. [all data]
Leito, Raamat, et al., 2009
Leito, I.; Raamat, E.; Kutt, A.; Saame, J.; Kipper, K.; Koppel, I.A.; Koppel, I.; Zhang, M.; Mishima, M.; Yagupolskii, L.M.; Garlyauskayte, R.Y.; Filatov, A.A.,
Revision of the Gas-Phase Acidity Scale below 300 kcal mol(-1),
J. Phys. Chem. A, 2009, 113, 29, 8421-8424, https://doi.org/10.1021/jp903780k
. [all data]
Koppel, Koppel, et al., 1998
Koppel, I.; Koppel, J.; Maria, P.C.; Gal, J.F.; Notario, R.; Vlasov, V.M.; Taft, R.W.,
Comparison of Bronsted acidities of neutral NH-acids in gas phase, dimethyl sulfoxide and water,
Int. J. Mass Spectrom., 1998, 175, 1-2, 61-69, https://doi.org/10.1016/S0168-1176(98)00113-X
. [all data]
Dahlke and Kass, 1991
Dahlke, G.D.; Kass, S.R.,
Substituent Effects in the Gas Phase - 1-Substituted Allyl Anions,
J. Am. Chem. Soc., 1991, 113, 15, 5566, https://doi.org/10.1021/ja00015a008
. [all data]
Poutsma, Nash, et al., 1997
Poutsma, J.C.; Nash, J.J.; Paulino, J.A.; Squires, R.R.,
Absolute Heats of Formation of Phenylcarbene and Vinylcarbene,
J. Am. Chem. Soc., 1997, 119, 20, 4686, https://doi.org/10.1021/ja963918s
. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method,
J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105
. [all data]
Linnert and Riveros, 1994
Linnert, H.V.; Riveros, J.M.,
Benzyne-related mechanisms in the gas phase ion molecule reactions of haloarenes,
Int. J. Mass Spectrom. Ion Proc., 1994, 140, 1, 163, https://doi.org/10.1016/0168-1176(94)04079-6
. [all data]
DePuy and Bierbaum, 1981
DePuy, C.H.; Bierbaum, V.M.,
Gas phase sulfur anions: Synthesis and reactions of H2NS- and related ions,
Tetrahedron Lett., 1981, 22, 5129. [all data]
Bierbaum, Grabowski, et al., 1984
Bierbaum, V.M.; Grabowski, J.J.; DePuy, C.H.,
Gas-phase synthesis and reactions of nitrogen- and sulfur-containing anions,
J. Phys. Chem., 1984, 88, 1389. [all data]
Clair and McMahon, 1980
Clair, R.L.; McMahon, T.B.,
An ion cyclotron resonance study of base-induced elimination reactions of fluorinated alcohols and unimolecular loss of HF from chemically activated fluoroalkoxide ions,
Int. J. Mass Spectrom. Ion Phys., 1980, 33, 21. [all data]
Dawson and Jennings, 1977
Dawson, J.H.J.; Jennings, K.R.,
Relative gas phase acidities of some fluoroalcohols,
Int. J. Mass Spectrom. Ion Phys., 1977, 25, 47. [all data]
Damrauer and Krempp, 1990
Damrauer, R.; Krempp, M.,
Gas Phase Ion-Molecule Chemistry of Methoxy-Substituted Silanes: Collision Induced Decomposition of Siloxide Ions Leading to Anions of Silaacetaldehyde and Methyl Silaformate,
Organomet., 1990, 9, 4, 999, https://doi.org/10.1021/om00118a015
. [all data]
Froelicher, Freiser, et al., 1984
Froelicher, S.W.; Freiser, B.S.; Squires, R.R.,
Dimethylsilanone Enolate,
J. Am. Chem. Soc., 1984, 106, 22, 6863, https://doi.org/10.1021/ja00334a077
. [all data]
Desai, Wu, et al., 1996
Desai, S.R.; Wu, H.; Wang, L.-S.,
Vibrationally Resolved Photoelectron Spectroscopy of AlO- and AlO2-,
Int. J. Mass Spectrom. Ion Proc., 1996, 159, 1-3, 75, https://doi.org/10.1016/S0168-1176(96)04443-6
. [all data]
Damrauer, Krempp, et al., 1991
Damrauer, R.; Krempp, M.; Schmidt, M.W.; Gordon, M.S.,
Gas-Phase Chemistry of the Dimethylaluminum Oxide Ion and Related Aluminum Oxide Ions - Comparison of Reactivity with Siloxide Ions,
J. Am. Chem. Soc., 1991, 113, 7, 2393, https://doi.org/10.1021/ja00007a007
. [all data]
Yang, Kiran, et al., 2004
Yang, X.; Kiran, B.; Wang, X.B.; Wang, L.S.; Mucha, M.; Jungwirth, P.,
Solvation of the azide anion (N-3(-)) in water clusters and aqueous interfaces: A combined investigation by photoelectron spectroscopy, density functional calculations, and molecular dynamic,
J. Phys. Chem. A, 2004, 108, 39, 7820-7826, https://doi.org/10.1021/jp0496396
. [all data]
Pellerite, Jackson, et al., 1981
Pellerite, M.J.; Jackson, R.L.; Brauman, J.I.,
Proton affinity of the gaseous azide Ion. The N-H bond dissociation enegry in HN3,
J. Phys. Chem., 1981, 85, 1624. [all data]
Franklin, Dibeler, et al., 1958
Franklin, J.L.; Dibeler, V.H.; Reese, R.M.; Krauss, M.,
Ionization and dissociation of hydrazoic acid and methyl azide by electron impact,
J. Am. Chem. Soc., 1958, 80, 298. [all data]
Ingemann and Nibbering, 1985
Ingemann, S.; Nibbering, N.M.M.,
Gas phase chemistry of dipole stabilized carbanions derived from N,N-dimethylthioformamide and N,N-dimethylnitrosamine,
Acta Chem. Scand., Ser. B, 1985, 39, 697. [all data]
Korsunskii, Pepekin, et al., 1967
Korsunskii, B.L.; Pepekin, V.I.; Lebedev, Yu.A.; Apin, A.Ya.,
Bull. Acad. Sci. USSR Div. Chem. Sci., 1967, 509. [all data]
Brinkman, Salomon, et al., 1995
Brinkman, E.A.; Salomon, K.; Tumas, W.; Brauman, J.I.,
Electron affinities and gas-phase acidities of organogermanium and organotin compounds,
J. Am. Chem. Soc., 1995, 117, 17, 4905, https://doi.org/10.1021/ja00122a022
. [all data]
Wenthold, Hu, et al., 1999
Wenthold, P.G.; Hu, J.; Squires, R.R.; Lineberger, W.C.,
Photoelectron spectroscopy of the trimethylenemethane negative ion,
J. Am. Soc. Mass Spectrom., 1999, 10, 9, 800-809, https://doi.org/10.1016/S1044-0305(99)00043-4
. [all data]
Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C.,
Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions,
J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n
. [all data]
Bartmess and Burnham, 1984
Bartmess, J.E.; Burnham, R.,
Effect of central substituents on the gas phase acidities of propenes,
J. Org. Chem., 1984, 49, 1382. [all data]
Kass and DePuy, 1985
Kass, S.R.; DePuy, C.H.,
Gas phase ion chemistry of azides. The generation of CH=N- and CH2=NCH2-,
J. Org. Chem., 1985, 50, 2874. [all data]
Jones, Bernier, et al., 2007
Jones, C.M.; Bernier, M.; Carson, E.; Colyer, K.E.; Metz, R.; Pawlow, A.; Wischow, E.D.; Webb, I.; Andriole, E.J.; Poutsma, J.C.,
Gas-phase Acities of the 20 Protein Amino Acids,
Int. J. Mass Spectrom., 2007, 267, 1-3, 54-62, https://doi.org/10.1016/j.ijms.2007.02.018
. [all data]
Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P.,
Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria,
Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092
. [all data]
Locke and McIver, 1983
Locke, M.J.; McIver, R.T., Jr.,
Effect of Solvation on the Acid/Base Properties of Glycine,
J. Am. Chem. Soc., 1983, 105, 4226. [all data]
Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A.,
Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry,
Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C
. [all data]
Grabowski and Owusu
Grabowski, J.J.; Owusu, D.,
, as cited in 98CLI/WEN. [all data]
DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P.,
Formation and Reactions of Heteroaromatic Anions in the Gas Phase,
J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001
. [all data]
Smith, Kim, et al., 1997
Smith, J.R.; Kim, J.B.; Lineberger, W.C.,
High-resolution Threshold Photodetachment Spectroscopy of OH-,
Phys. Rev. A, 1997, 55, 3, 2036, https://doi.org/10.1103/PhysRevA.55.2036
. [all data]
Matimba, Crabbendam, et al., 1992
Matimba, H.E.K.; Crabbendam, A.M.; Ingemann, S.; Nibbering, N.M.M.,
Gas-phase Bimolecular Chemistry of the .-CHNC and .-CHCN Radical Anions,
Int. J. Mass Spectrom. Ion Proc., 1992, 114, 1-2, 85, https://doi.org/10.1016/0168-1176(92)85024-T
. [all data]
Filley, DePuy, et al., 1987
Filley, J.; DePuy, C.H.; Bierbaum, V.M.,
Gas-Phase Negative Ion Chemistry of Methyl Isocyanide,
J. Am. Chem. Soc., 1987, 109, 20, 5992, https://doi.org/10.1021/ja00254a017
. [all data]
Blondel, Chaibi, et al., 2005
Blondel, C.; Chaibi, W.; Delsart, C.; Drag, C.; Goldfarb, F.; Kroger, S.,
The electron affinities of O, Si, and S revisited with the photodetachment microscope,
Eur. Phys. J. D, 2005, 33, 3, 335-342, https://doi.org/10.1140/epjd/e2005-00069-9
. [all data]
Blondel, Delsart, et al., 2001
Blondel, C.; Delsart, C.; Goldfarb, F.,
Electron spectrometry at the mu eV level and the electron affinities of Si and F,
J. Phys. B: Atom. Mol. Opt. Phys., 2001, 34, 9, L281-L288, https://doi.org/10.1088/0953-4075/34/9/101
. [all data]
Rempala and Ervin, 2000
Rempala, K.; Ervin, K.M.,
Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H,
J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016
. [all data]
Gianola, Ichino, et al., 2005
Gianola, A.J.; Ichino, T.; Hoenigman, R.L.; Kato, S.; Bierbaum, V.M.; Lineberger, W.C.,
Photoelectron spectra and ion chemistry of imidazolide,
J. Phys. Chem. A, 2005, 109, 50, 11504-11514, https://doi.org/10.1021/jp053566o
. [all data]
Taft, Anvia, et al., 1986
Taft, R.W.; Anvia, F.; Taagepera, M.; Catalan, J.; Elgueroy, J.,
Electrostatic proximity effects in the relative basicities of pyrazole, imidazole, pyridazine, and pyrimidine,
J. Am. Chem. Soc., 1986, 108, 3237. [all data]
Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M.,
The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids,
J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.