Hydrogen cation


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 651 to 700

C6H13O- + Hydrogen cation = 1-Pentanol, 3-methyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr373.6 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr367.0 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C5H11O- + Hydrogen cation = 1-Butanol, 2-methyl-

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr373.9 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr367.3 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C7H15O- + Hydrogen cation = 2-Heptanol

By formula: C7H15O- + H+ = C7H16O

Quantity Value Units Method Reference Comment
Δr372.4 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr365.8 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C6H13O- + Hydrogen cation = 2-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr372.8 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr366.2 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C5H3F3NO2- + Hydrogen cation = C5H4F3NO2

By formula: C5H3F3NO2- + H+ = C5H4F3NO2

Quantity Value Units Method Reference Comment
Δr331.5 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.
Quantity Value Units Method Reference Comment
Δr324.7 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.

C11H9N2O3- + Hydrogen cation = C11H10N2O3

By formula: C11H9N2O3- + H+ = C11H10N2O3

Quantity Value Units Method Reference Comment
Δr316.5 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr309.0 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C10H6N3O- + Hydrogen cation = C10H7N3O

By formula: C10H6N3O- + H+ = C10H7N3O

Quantity Value Units Method Reference Comment
Δr309.8 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.
Quantity Value Units Method Reference Comment
Δr303.0 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.

C13H11BrNO5- + Hydrogen cation = C13H12BrNO5

By formula: C13H11BrNO5- + H+ = C13H12BrNO5

Quantity Value Units Method Reference Comment
Δr326.2 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr317.8 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C16H10NO3- + Hydrogen cation = C16H11NO3

By formula: C16H10NO3- + H+ = C16H11NO3

Quantity Value Units Method Reference Comment
Δr321.2 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr313.3 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C20H24O4- + Hydrogen cation = C20H25O4

By formula: C20H24O4- + H+ = C20H25O4

Quantity Value Units Method Reference Comment
Δr350.2 ± 2.8kcal/molG+TSBourgoin-Voillard, Fournier, et al., 2012gas phase; See Bourgoin-Voillard, Zins, et al., 2009 for more
Quantity Value Units Method Reference Comment
Δr345.1 ± 2.4kcal/molCIDCBourgoin-Voillard, Fournier, et al., 2012gas phase; See Bourgoin-Voillard, Zins, et al., 2009 for more

C6H13O- + Hydrogen cation = 1-Butanol, 2-ethyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr373.1 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr366.5 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C5H5O2- + Hydrogen cation = 1,3-Cyclopentanedione

By formula: C5H5O2- + H+ = C5H6O2

Quantity Value Units Method Reference Comment
Δr333.5 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.
Quantity Value Units Method Reference Comment
Δr326.5 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.

C15H16NO3- + Hydrogen cation = C15H17NO3

By formula: C15H16NO3- + H+ = C15H17NO3

Quantity Value Units Method Reference Comment
Δr334.8 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr326.1 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C8H7- + Hydrogen cation = Cubane

By formula: C8H7- + H+ = C8H8

Quantity Value Units Method Reference Comment
Δr403.4 ± 3.1kcal/molG+TSHare, Emrick, et al., 1997gas phase; Comparable to ammonia; D exchange with ND3
Quantity Value Units Method Reference Comment
Δr396.5 ± 3.0kcal/molIMRBHare, Emrick, et al., 1997gas phase; Comparable to ammonia; D exchange with ND3

C5H7O4- + Hydrogen cation = Propanedioic acid, dimethyl ester

By formula: C5H7O4- + H+ = C5H8O4

Quantity Value Units Method Reference Comment
Δr348.0 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.
Quantity Value Units Method Reference Comment
Δr341.3 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.

C9H5O2- + Hydrogen cation = 1H-Indene-1,3(2H)-dione

By formula: C9H5O2- + H+ = C9H6O2

Quantity Value Units Method Reference Comment
Δr334.7 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.
Quantity Value Units Method Reference Comment
Δr327.9 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.

C12H9- + Hydrogen cation = Acenaphthene

By formula: C12H9- + H+ = C12H10

Quantity Value Units Method Reference Comment
Δr372.5 ± 2.5kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; acenaphthene: 1,8-(1,2-ethano)naphthalene
Quantity Value Units Method Reference Comment
Δr365.8 ± 2.0kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; acenaphthene: 1,8-(1,2-ethano)naphthalene

C7H8N5- + Hydrogen cation = C7H9N5

By formula: C7H8N5- + H+ = C7H9N5

Quantity Value Units Method Reference Comment
Δr351.1 ± 4.1kcal/molG+TSSharma and Lee, 2002gas phase; between mMe-phenol and pCF3-aniline
Quantity Value Units Method Reference Comment
Δr344.0 ± 4.0kcal/molIMRBSharma and Lee, 2002gas phase; between mMe-phenol and pCF3-aniline

C19H11- + Hydrogen cation = C19H12

By formula: C19H11- + H+ = C19H12

Quantity Value Units Method Reference Comment
Δr332.5 ± 2.1kcal/molG+TSTaft and Bordwell, 1988gas phase; Acid HOF: 104.7 MMX; 123.4 AM1; 92 G3MP2B3
Quantity Value Units Method Reference Comment
Δr324.9 ± 2.0kcal/molIMRETaft and Bordwell, 1988gas phase; Acid HOF: 104.7 MMX; 123.4 AM1; 92 G3MP2B3

C4H5- + Hydrogen cation = Bicyclo[1.1.0]butane

By formula: C4H5- + H+ = C4H6

Quantity Value Units Method Reference Comment
Δr399.2 ± 4.1kcal/molG+TSKass and Chou, 1988gas phase; Acidity between NH3, Me2NH, near nPrNH2.
Quantity Value Units Method Reference Comment
Δr391.0 ± 4.0kcal/molIMRBKass and Chou, 1988gas phase; Acidity between NH3, Me2NH, near nPrNH2.

C3H4NS- + Hydrogen cation = (Methylthio)-acetonitrile

By formula: C3H4NS- + H+ = C3H5NS

Quantity Value Units Method Reference Comment
Δr357.6 ± 2.5kcal/molG+TSBorn, Ingemann, et al., 1996gas phase; Acidity >CF3CH2OH, comparable to MeNO2
Quantity Value Units Method Reference Comment
Δr350.0 ± 2.0kcal/molIMRBBorn, Ingemann, et al., 1996gas phase; Acidity >CF3CH2OH, comparable to MeNO2

CHClF- + Hydrogen cation = Methane, chlorofluoro-

By formula: CHClF- + H+ = CH2ClF

Quantity Value Units Method Reference Comment
Δr385.94 ± 0.95kcal/molG+TSPoutsma, Paulino, et al., 1997gas phase; Relative to MeOH at ΔGacid=375.1
Quantity Value Units Method Reference Comment
Δr376.70 ± 0.30kcal/molIMREPoutsma, Paulino, et al., 1997gas phase; Relative to MeOH at ΔGacid=375.1

C11H13O2- + Hydrogen cation = 2,3,5,6-Tetramethylbenzoic acid

By formula: C11H13O2- + H+ = C11H14O2

Quantity Value Units Method Reference Comment
Δr338.6 ± 2.1kcal/molG+TSDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol
Quantity Value Units Method Reference Comment
Δr331.6 ± 2.0kcal/molIMREDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol

C3H8N- + Hydrogen cation = Methylamine, N,N-dimethyl-

By formula: C3H8N- + H+ = C3H9N

Quantity Value Units Method Reference Comment
Δr>406.22 ± 0.60kcal/molG+TSMacKay and Bohme, 1978gas phase; Computations put dHacid ca. 412 kcal/mol
Quantity Value Units Method Reference Comment
Δr>398.00kcal/molIMRBMacKay and Bohme, 1978gas phase; Computations put dHacid ca. 412 kcal/mol

C5H9O- + Hydrogen cation = C5H10O

By formula: C5H9O- + H+ = C5H10O

Quantity Value Units Method Reference Comment
Δr359.5 ± 4.1kcal/molG+TSPeerboom, Ingemann, et al., 1985gas phase; likely anion mixture of open and cyclized
Quantity Value Units Method Reference Comment
Δr352.3 ± 4.0kcal/molIMRBPeerboom, Ingemann, et al., 1985gas phase; likely anion mixture of open and cyclized

C9H9O2- + Hydrogen cation = Benzoic acid, 2,3-dimethyl-

By formula: C9H9O2- + H+ = C9H10O2

Quantity Value Units Method Reference Comment
Δr339.1 ± 2.1kcal/molG+TSDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol
Quantity Value Units Method Reference Comment
Δr332.1 ± 2.0kcal/molIMREDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol

C9H9O2- + Hydrogen cation = Benzoic acid, 2,4-dimethyl-

By formula: C9H9O2- + H+ = C9H10O2

Quantity Value Units Method Reference Comment
Δr339.9 ± 2.1kcal/molG+TSDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol
Quantity Value Units Method Reference Comment
Δr332.9 ± 2.0kcal/molIMREDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol

C9H9O2- + Hydrogen cation = Benzoic acid, 2,5-dimethyl-

By formula: C9H9O2- + H+ = C9H10O2

Quantity Value Units Method Reference Comment
Δr339.5 ± 2.1kcal/molG+TSDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol
Quantity Value Units Method Reference Comment
Δr332.5 ± 2.0kcal/molIMREDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol

C9H9O2- + Hydrogen cation = Benzoic acid, 2,6-dimethyl-

By formula: C9H9O2- + H+ = C9H10O2

Quantity Value Units Method Reference Comment
Δr338.4 ± 2.1kcal/molG+TSDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol
Quantity Value Units Method Reference Comment
Δr331.4 ± 2.0kcal/molIMREDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol

C10H11O2- + Hydrogen cation = Benzoic acid, 2,4,6-trimethyl-

By formula: C10H11O2- + H+ = C10H12O2

Quantity Value Units Method Reference Comment
Δr339.0 ± 2.1kcal/molG+TSDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol
Quantity Value Units Method Reference Comment
Δr332.0 ± 2.0kcal/molIMREDecouzon, Ertl, et al., 1993gas phase; relative to benzoate at 333.0 kcal/mol

CH2F- + Hydrogen cation = Methyl fluoride

By formula: CH2F- + H+ = CH3F

Quantity Value Units Method Reference Comment
Δr419.7 ± 4.6kcal/molEIAERogers, Simpson, et al., 2010gas phase
Δr409.0 ± 4.0kcal/molCIDTGraul and Squires, 1990gas phase
Quantity Value Units Method Reference Comment
Δr400.6 ± 4.1kcal/molH-TSGraul and Squires, 1990gas phase

CH5Si- + Hydrogen cation = Silane, methyl-

By formula: CH5Si- + H+ = CH6Si

Quantity Value Units Method Reference Comment
Δr388.4 ± 4.1kcal/molG+TSDamrauer, Kass, et al., 1988gas phase; Slightly less acidic then fluorobenzene
Quantity Value Units Method Reference Comment
Δr380.0 ± 4.0kcal/molIMRBDamrauer, Kass, et al., 1988gas phase; Slightly less acidic then fluorobenzene

C12H22N5O4S + Hydrogen cation = C12H23N5O4S

By formula: C12H22N5O4S + H+ = C12H23N5O4S

Quantity Value Units Method Reference Comment
Δr332.2 ± 2.0kcal/molCIDCRen, Tan, et al., 2009gas phase; acid:H2N-(Ala)3-Cysteinamide)
Quantity Value Units Method Reference Comment
Δr325.0 ± 2.1kcal/molH-TSRen, Tan, et al., 2009gas phase; acid:H2N-(Ala)3-Cysteinamide)

C15H27N6O5S + Hydrogen cation = C15H28N6O5S

By formula: C15H27N6O5S + H+ = C15H28N6O5S

Quantity Value Units Method Reference Comment
Δr325.9 ± 2.0kcal/molCIDCRen, Tan, et al., 2009gas phase; acid:H2N-(Ala)4-Cysteinamide)
Quantity Value Units Method Reference Comment
Δr320.2 ± 2.1kcal/molH-TSRen, Tan, et al., 2009gas phase; acid:H2N-(Ala)4-Cysteinamide)

C4F6NO2- + Hydrogen cation = C4HF6NO2

By formula: C4F6NO2- + H+ = C4HF6NO2

Quantity Value Units Method Reference Comment
Δr314.4 ± 2.2kcal/molG+TSKoppel, Taft, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr307.5 ± 2.0kcal/molIMRELeito, Raamat, et al., 2009gas phase
Δr307.5 ± 2.0kcal/molIMREKoppel, Taft, et al., 1994gas phase

C2H3D5O- + Hydrogen cation = Ethanol-1,1-d2

By formula: C2H3D5O- + H+ = C2H4D2O

Quantity Value Units Method Reference Comment
Δr377.7 ± 2.2kcal/molG+TSDang, Motell, et al., 1993gas phase; Acidity 0.35±0.15 weaker than CH3CH2OH
Quantity Value Units Method Reference Comment
Δr371.1 ± 2.1kcal/molCIDCDang, Motell, et al., 1993gas phase; Acidity 0.35±0.15 weaker than CH3CH2OH

C6H7N2O2- + Hydrogen cation = 2,4(1H,3H)-Pyrimidinedione, 1,3-dimethyl-

By formula: C6H7N2O2- + H+ = C6H8N2O2

Quantity Value Units Method Reference Comment
Δr369.0 ± 2.0kcal/molIMRBLee, 2005gas phase
Δr370.7 ± 3.2kcal/molG+TSGronert, Feng, et al., 2000gas phase
Quantity Value Units Method Reference Comment
Δr363.0 ± 3.1kcal/molIMRBGronert, Feng, et al., 2000gas phase

C6HCl4- + Hydrogen cation = Benzene, 1,2,4,5-tetrachloro-

By formula: C6HCl4- + H+ = C6H2Cl4

Quantity Value Units Method Reference Comment
Δr361.8 ± 2.1kcal/molG+TSSchlosser, Marzi, et al., 2001gas phase; Acid: 1,2,4,5-tetrachlorobenzene.
Quantity Value Units Method Reference Comment
Δr353.7 ± 2.0kcal/molIMRESchlosser, Marzi, et al., 2001gas phase; Acid: 1,2,4,5-tetrachlorobenzene.

C12H22N5O4S + Hydrogen cation = C12H23N5O4S

By formula: C12H22N5O4S + H+ = C12H23N5O4S

Quantity Value Units Method Reference Comment
Δr319.3 ± 3.0kcal/molCIDCRen, Tan, et al., 2009gas phase; acid:H2N-Cys-(Ala)2-CHMeCONH2
Quantity Value Units Method Reference Comment
Δr316.3 ± 3.1kcal/molH-TSRen, Tan, et al., 2009gas phase; acid:H2N-Cys-(Ala)2-CHMeCONH2

C15H27N6O5S + Hydrogen cation = C15H28N6O5S

By formula: C15H27N6O5S + H+ = C15H28N6O5S

Quantity Value Units Method Reference Comment
Δr319.2 ± 4.0kcal/molCIDCRen, Tan, et al., 2009gas phase; acid:H2N-Cys-(Ala)3-CHMeCONH2
Quantity Value Units Method Reference Comment
Δr315.4 ± 4.1kcal/molH-TSRen, Tan, et al., 2009gas phase; acid:H2N-Cys-(Ala)3-CHMeCONH2

CHO- + Hydrogen cation = Formaldehyde

By formula: CHO- + H+ = CH2O

Quantity Value Units Method Reference Comment
Δr394.52 ± 0.23kcal/molD-EAMurray, Miller, et al., 1986gas phase
Quantity Value Units Method Reference Comment
Δr386.65 ± 0.40kcal/molH-TSMurray, Miller, et al., 1986gas phase
Δr394.0 ± 4.5kcal/molIMRBKarpas and Klein, 1975gas phase

C2H3O2- + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr368.0 ± 3.1kcal/molG+TSGrabowski and Cheng, 1989gas phase
Δr367.8 ± 4.6kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Δr361.2 ± 3.0kcal/molIMRBGrabowski and Cheng, 1989gas phase

C8H9O- + Hydrogen cation = Benzenemethanol, α-methyl-

By formula: C8H9O- + H+ = C8H10O

Quantity Value Units Method Reference Comment
Δr368.1 ± 2.5kcal/molG+TSAbboud, Koppel, et al., 2013gas phase
Quantity Value Units Method Reference Comment
Δr361.5 ± 2.4kcal/molIMREAbboud, Koppel, et al., 2013gas phase
Δr361.3 ± 2.8kcal/molCIDCGraul, Schnute, et al., 1990gas phase

C6H4F- + Hydrogen cation = Benzene, fluoro-

By formula: C6H4F- + H+ = C6H5F

Quantity Value Units Method Reference Comment
Δr399.60 ± 0.90kcal/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr391.8 ± 1.0kcal/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C3H6NO2- + Hydrogen cation = Acetamide, N-hydroxy-N-methyl

By formula: C3H6NO2- + H+ = C3H7NO2

Quantity Value Units Method Reference Comment
Δr354.3 ± 2.3kcal/molG+TSDecouzon, Exner, et al., 1990gas phase; Acid: N-methyl acetohydroxamic acid
Quantity Value Units Method Reference Comment
Δr346.9 ± 2.0kcal/molIMREDecouzon, Exner, et al., 1990gas phase; Acid: N-methyl acetohydroxamic acid

C9H5F6O4S2- + Hydrogen cation = [bis[(trifluoromethyl)sulphonyl]methyl]benzene

By formula: C9H5F6O4S2- + H+ = C9H6F6O4S2

Quantity Value Units Method Reference Comment
Δr300.0 ± 2.0kcal/molIMRELeito, Raamat, et al., 2009gas phase
Δr301.3 ± 2.0kcal/molIMREKoppel, Taft, et al., 1994gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by up to 1.3 kcal/mol.

C6H4F- + Hydrogen cation = Benzene, fluoro-

By formula: C6H4F- + H+ = C6H5F

Quantity Value Units Method Reference Comment
Δr395.2 ± 2.0kcal/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr387.0 ± 2.1kcal/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C6H4Br- + Hydrogen cation = Benzene, bromo-

By formula: C6H4Br- + H+ = C6H5Br

Quantity Value Units Method Reference Comment
Δr383.5 ± 2.1kcal/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr375.3 ± 2.2kcal/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C6H4Br- + Hydrogen cation = Benzene, bromo-

By formula: C6H4Br- + H+ = C6H5Br

Quantity Value Units Method Reference Comment
Δr392.8 ± 2.0kcal/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr385.0 ± 2.1kcal/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C7H6Cl- + Hydrogen cation = Benzyl chloride

By formula: C7H6Cl- + H+ = C7H7Cl

Quantity Value Units Method Reference Comment
Δr396.6 ± 1.6kcal/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr388.8 ± 1.7kcal/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Mishima, Matsuoka, et al., 2004
Mishima, M.; Matsuoka, M.; Lei, Y.X.; Rappoport, Z., Gas-phase acidities of disubstituted methanes and of enols of carboxamides substituted by electron-withdrawing groups, J. Org. Chem., 2004, 69, 18, 5947-5965, https://doi.org/10.1021/jo040196b . [all data]

Bourgoin-Voillard, Fournier, et al., 2012
Bourgoin-Voillard, S.; Fournier, F.; Afonso, C.; Zins, E.L.; Jacquot, Y.; Pepe, C.; Leclercq, G.; Tabet, J.C., Electronic Effects of 11 beta Substituted 17 beta-Estradiol Derivatives and Instrumental Effects on the Relative Gas Phase Acidity, J. Am. Soc. Mass Spectrom., 2012, 23, 12, 2167-2177, https://doi.org/10.1007/s13361-012-0486-8 . [all data]

Bourgoin-Voillard, Zins, et al., 2009
Bourgoin-Voillard, S.; Zins, E.L.; Fournier, F.; Jacquot, Y.; Afonso, C.; Pepe, C.; Leclercq, G.; Tabet, J.C., Stereochemical Effects During [M-H](-) Dissociations of Epimeric 11-OH-17 beta-Estradiols and Distant Electronic Effects of Substituents at C-(11) Position on Gas Phase Acidity, J. Am. Soc. Mass Spectrom., 2009, 20, 12, 2318-2333, https://doi.org/10.1016/j.jasms.2009.08.017 . [all data]

Hare, Emrick, et al., 1997
Hare, M.; Emrick, T.; Eaton, P.E.; Kass, S.R., Cubyl Anion Formation and an Experimental Determination of the Acidity and C-H Bond Dissociation Energy of Cubane, J. Am. Chem. Soc., 1997, 119, 1, 237, https://doi.org/10.1021/ja9627858 . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Sharma and Lee, 2002
Sharma, S.; Lee, J.K., Acidity of adenine and adenine derivatives and biological implications. A computational and experimental gas-phase study, J. Org. Chem., 2002, 67, 24, 8360-8365, https://doi.org/10.1021/jo0204303 . [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Kass and Chou, 1988
Kass, S.R.; Chou, P.K., The Bicyclobutyl Anion: An Alkyl Carbanion, J. Am. Chem. Soc., 1988, 110, 23, 7899, https://doi.org/10.1021/ja00231a063 . [all data]

Born, Ingemann, et al., 1996
Born, M.; Ingemann, S.; Nibbering, N.M.M., Experimental Determination of the Enthalpies of Formation of Formyl Cyanide and Thioformyl Cyanide in the Gas Phase, J. Phys. Chem., 1996, 100, 44, 17662, https://doi.org/10.1021/jp9609141 . [all data]

Poutsma, Paulino, et al., 1997
Poutsma, J.C.; Paulino, J.A.; Squires, R.R., Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study., J. Phys. Chem. A, 1997, 101, 29, 5327, https://doi.org/10.1021/jp970778f . [all data]

Decouzon, Ertl, et al., 1993
Decouzon, M.; Ertl, P.; Exner, O.; Gal, J.F.; Maria, P.C., Concepts of Sterically Hindered Resonance and Buttressing Effect - Gas-Phase Acidities of Methyl-Substituted Benzoic Acids and Basicities of, J. Am. Chem. Soc., 1993, 115, 25, 12071, https://doi.org/10.1021/ja00078a052 . [all data]

MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K., Proton-Transfer Reactions in Nitromethane at 297K, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7 . [all data]

Peerboom, Ingemann, et al., 1985
Peerboom, R.; Ingemann, S.; Nibbering, N.M.M., Isomeric C5H9O- Ions Formed in the Gas-Phase Reactions of Anions with 2,2-Dimethylpropanal and 2,2-Dimethylcyclopropanol, Recl. Trav. Chim. Pays-Bas, 1985, 104, 3, 74, https://doi.org/10.1002/recl.19851040305 . [all data]

Rogers, Simpson, et al., 2010
Rogers, N.J.; Simpson, M.J.; Tuckett, R.P.; Dunn, K.F.; Latimer, C.J., Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br, Phys. Chem. Chem. Phys., 2010, 12, 36, 10971-10980, https://doi.org/10.1039/c0cp00234h . [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Damrauer, Kass, et al., 1988
Damrauer, R.; Kass, S.R.; DePuy, C.H., Gas-Phase Acidities of Methylsilanes: C-H versus Si-H, Organomet., 1988, 7, 3, 637, https://doi.org/10.1021/om00093a011 . [all data]

Ren, Tan, et al., 2009
Ren, J.H.; Tan, J.P.; Harper, R.T., Gas-Phase Acidities of Cysteine-Polyalanine Peptides I: A(3,4)CSH and HSCA(3,4), J. Phys. Chem. A, 2009, 113, 41, 10903-10912, https://doi.org/10.1021/jp903594a . [all data]

Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M., The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids, J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038 . [all data]

Leito, Raamat, et al., 2009
Leito, I.; Raamat, E.; Kutt, A.; Saame, J.; Kipper, K.; Koppel, I.A.; Koppel, I.; Zhang, M.; Mishima, M.; Yagupolskii, L.M.; Garlyauskayte, R.Y.; Filatov, A.A., Revision of the Gas-Phase Acidity Scale below 300 kcal mol(-1), J. Phys. Chem. A, 2009, 113, 29, 8421-8424, https://doi.org/10.1021/jp903780k . [all data]

Dang, Motell, et al., 1993
Dang, T.T.; Motell, E.L.; Travers, M.J.; Clifford, E.P.; Ellison, G.B.; Depuy, C.H.; Bierbaum, V.M., Experimental and Computational Studies of Deuterated Ethanols - Gas-Phase Acidities, Electron Affinities and Bond Dissociation Energies, Int. J. Mass Spectrom. Ion Proc., 1993, 123, 3, 171, https://doi.org/10.1016/0168-1176(93)87096-B . [all data]

Lee, 2005
Lee, J.K., Insights into nucleic acid reactivity through gas-phase experimental and computational studies, Int. J. Mass Spectrom., 2005, 240, 3, 261-272, https://doi.org/10.1016/j.ijms.2004.09.020 . [all data]

Gronert, Feng, et al., 2000
Gronert, S.; Feng, W.Y.; Chew, F.; Wu, W.M., The gas phase acid/base properties of 1,3,-dimethyluracil, 1-methyl-2-pyridone, and 1-methyl-4-pyridone: relevance to the mechanism of orotidine-5 '-monophosphate decarboxylase, Int. J. Mass Spectrom., 2000, 196, 251-258, https://doi.org/10.1016/S1387-3806(99)00191-8 . [all data]

Schlosser, Marzi, et al., 2001
Schlosser, M.; Marzi, E.; Cottet, F.; Buker, H.H.; Nibbering, N.M.M., The acidity of chloro-substituted benzenes: A comparison of gas phase, ab initio, and kinetic data, Chem. Eur. J., 2001, 7, 16, 3511-3516, https://doi.org/10.1002/1521-3765(20010817)7:16<3511::AID-CHEM3511>3.0.CO;2-U . [all data]

Murray, Miller, et al., 1986
Murray, K.K.; Miller, T.M.; Leopold, D.G.; Lineberger, W.C., Laser photoelectron spectroscopy of the Formylf anion, J. Chem. Phys., 1986, 84, 2520. [all data]

Karpas and Klein, 1975
Karpas, Z.; Klein, F.S., Negative ion-molecule reactions in a mixture of ammonia-formaldehyde - an ICR mass spectrometry study, Int. J. Mass Spectrom. Ion Phys., 1975, 18, 65. [all data]

Grabowski and Cheng, 1989
Grabowski, J.J.; Cheng, X., Gas-Phase Formation of the Enolate Monoanion of Acetic Acid by Proton Abstraction, J. Am. Chem. Soc., 1989, 111, 8, 3106, https://doi.org/10.1021/ja00190a078 . [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Abboud, Koppel, et al., 2013
Abboud, J.L.M.; Koppel, I.A.; Koppel, I., Additivity of substituent effects on the acidity of alcohols, J. Phys. Org. Chem., 2013, 26, 6, 467-472, https://doi.org/10.1002/poc.3110 . [all data]

Graul, Schnute, et al., 1990
Graul, S.T.; Schnute, M.E.; Squires, R.R., Gas-Phase Acidities of Carboxylic Acids and Alcohols from Collision-Induced Dissociation of Dimer Cluster Ions, Int. J. Mass Spectrom. Ion Proc., 1990, 96, 2, 181, https://doi.org/10.1016/0168-1176(90)87028-F . [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method, J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105 . [all data]

Decouzon, Exner, et al., 1990
Decouzon, M.; Exner, O.; Gal, J.-F.; Maria, P.-C., The Gas-Phase Acidity and the Acidic Site of Acetohydroxamic Acid: an FT-ICR Study, J. Org. Chem., 1990, 55, 13, 3980, https://doi.org/10.1021/jo00300a007 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References