Hydrogen cation


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 601 to 650

C7H7O- + Hydrogen cation = Anisole

By formula: C7H7O- + H+ = C7H8O

Quantity Value Units Method Reference Comment
Δr398.3 ± 3.1kcal/molG+TSDahlke and Kass, 1992gas phase; Acid: anisole. Between HO- and m,p-methoxyphenide
Quantity Value Units Method Reference Comment
Δr391.0 ± 3.0kcal/molIMRBDahlke and Kass, 1992gas phase; Acid: anisole. Between HO- and m,p-methoxyphenide

ClO3- + Hydrogen cation = HClO3

By formula: ClO3- + H+ = HClO3

Quantity Value Units Method Reference Comment
Δr313.2 ± 3.3kcal/molIMRBMeyer and Kass, 2010gas phase
Δr<311. ± 12.kcal/molD-EAAlekseev, Fedorova, et al., 1983gas phase; From ClO3F
Quantity Value Units Method Reference Comment
Δr306.9 ± 3.9kcal/molH-TSMeyer and Kass, 2010gas phase

C7H7O- + Hydrogen cation = Anisole

By formula: C7H7O- + H+ = C7H8O

Quantity Value Units Method Reference Comment
Δr401.7 ± 3.1kcal/molG+TSDahlke and Kass, 1992gas phase; Acid: anisole. Between o-OMe-phenide and Me2NH.
Quantity Value Units Method Reference Comment
Δr394.0 ± 3.0kcal/molIMRBDahlke and Kass, 1992gas phase; Acid: anisole. Between o-OMe-phenide and Me2NH.

C5H6N- + Hydrogen cation = 1H-Pyrrole, 1-methyl-

By formula: C5H6N- + H+ = C5H7N

Quantity Value Units Method Reference Comment
Δr392.8 ± 3.1kcal/molG+TSDePuy, Kass, et al., 1988gas phase; Anion of N-methyl-pyrrole. Between Me2NH, H2O.
Quantity Value Units Method Reference Comment
Δr386.0 ± 3.0kcal/molIMRBDePuy, Kass, et al., 1988gas phase; Anion of N-methyl-pyrrole. Between Me2NH, H2O.

C24H31O- + Hydrogen cation = C24H32O

By formula: C24H31O- + H+ = C24H32O

Quantity Value Units Method Reference Comment
Δr343.6 ± 2.5kcal/molG+TSMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=334.7: 323 K
Quantity Value Units Method Reference Comment
Δr336.5 ± 2.0kcal/molIMREMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=334.7: 323 K

C27H26F3O- + Hydrogen cation = C27H27F3O

By formula: C27H26F3O- + H+ = C27H27F3O

Quantity Value Units Method Reference Comment
Δr329.7 ± 2.5kcal/molG+TSMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=323.4: 323 K
Quantity Value Units Method Reference Comment
Δr322.6 ± 2.0kcal/molIMREMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=323.4: 323 K

C26H26ClO- + Hydrogen cation = C26H27ClO

By formula: C26H26ClO- + H+ = C26H27ClO

Quantity Value Units Method Reference Comment
Δr334.0 ± 2.5kcal/molG+TSMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=327.0: 323 K
Quantity Value Units Method Reference Comment
Δr326.8 ± 2.0kcal/molIMREMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=327.0: 323 K

C27H29O- + Hydrogen cation = C27H30O

By formula: C27H29O- + H+ = C27H30O

Quantity Value Units Method Reference Comment
Δr338.3 ± 2.5kcal/molG+TSMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=330.2: 323 K
Quantity Value Units Method Reference Comment
Δr331.2 ± 2.0kcal/molIMREMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=330.2: 323 K

C23H29O- + Hydrogen cation = C23H30O

By formula: C23H29O- + H+ = C23H30O

Quantity Value Units Method Reference Comment
Δr346.6 ± 2.5kcal/molG+TSMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=337.2: 323 K
Quantity Value Units Method Reference Comment
Δr339.5 ± 2.0kcal/molIMREMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=337.2: 323 K

CFO- + Hydrogen cation = CHFO

By formula: CFO- + H+ = CHFO

Quantity Value Units Method Reference Comment
Δr352.6 ± 4.6kcal/molEIAEKarpas and Klein, 1977gas phase; From HCOF. G3MP2B3 calculations indicate an EA of ca. 2.3 eV, HOF(A-) 7 kcal/mol less stable.
Δr349.7 ± 3.3kcal/molAcidThynne and MacNeil, 1970gas phase; From CF2O

C7H6Br- + Hydrogen cation = Benzene, 1-bromo-3-methyl-

By formula: C7H6Br- + H+ = C7H7Br

Quantity Value Units Method Reference Comment
Δr373.6 ± 3.1kcal/molG+TSWenthold, Wierschke, et al., 1994gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2
Quantity Value Units Method Reference Comment
Δr366.5 ± 3.0kcal/molIMRBWenthold, Wierschke, et al., 1994gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2

C7H6Br- + Hydrogen cation = Benzene, 1-bromo-4-methyl-

By formula: C7H6Br- + H+ = C7H7Br

Quantity Value Units Method Reference Comment
Δr373.8 ± 3.1kcal/molG+TSWenthold, Wierschke, et al., 1994gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2
Quantity Value Units Method Reference Comment
Δr366.5 ± 3.0kcal/molIMRBWenthold, Wierschke, et al., 1994gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2

C26H27O- + Hydrogen cation = C26H28O

By formula: C26H27O- + H+ = C26H28O

Quantity Value Units Method Reference Comment
Δr336.5 ± 2.5kcal/molG+TSMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=328.7: 323 K
Quantity Value Units Method Reference Comment
Δr329.3 ± 2.0kcal/molIMREMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=328.7: 323 K

C29H33O- + Hydrogen cation = C29H34O

By formula: C29H33O- + H+ = C29H34O

Quantity Value Units Method Reference Comment
Δr337.7 ± 2.5kcal/molG+TSMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=330.9: 323 K
Quantity Value Units Method Reference Comment
Δr330.6 ± 2.0kcal/molIMREMishima, Mustanir, et al., 2000gas phase; Keto acidity; enol acidity=330.9: 323 K

C7H6Cl- + Hydrogen cation = Benzene, 1-chloro-2-methyl-

By formula: C7H6Cl- + H+ = C7H7Cl

Quantity Value Units Method Reference Comment
Δr373.6 ± 3.1kcal/molG+TSWenthold, Wierschke, et al., 1994gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2
Quantity Value Units Method Reference Comment
Δr366.5 ± 3.0kcal/molIMRBWenthold, Wierschke, et al., 1994gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2

C7H6Br- + Hydrogen cation = Benzene, 1-bromo-2-methyl-

By formula: C7H6Br- + H+ = C7H7Br

Quantity Value Units Method Reference Comment
Δr373.6 ± 3.1kcal/molG+TSWenthold, Wierschke, et al., 1994gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2
Quantity Value Units Method Reference Comment
Δr366.5 ± 3.0kcal/molIMRBWenthold, Wierschke, et al., 1994gas phase; Between MeOCH2CH2OH and tBuCH2OH, near CH2Cl2

C5H5S- + Hydrogen cation = Thiophene, 2-methyl-

By formula: C5H5S- + H+ = C5H6S

Quantity Value Units Method Reference Comment
Δr379.8 ± 3.1kcal/molG+TSDePuy, Kass, et al., 1988gas phase; Acid: 2-methylthiophene. Between MeOH, EtOH.
Quantity Value Units Method Reference Comment
Δr373.0 ± 3.0kcal/molIMRBDePuy, Kass, et al., 1988gas phase; Acid: 2-methylthiophene. Between MeOH, EtOH.

BO2- + Hydrogen cation = HBO2

By formula: BO2- + H+ = HBO2

Quantity Value Units Method Reference Comment
Δr322.9 ± 5.4kcal/molD-EAZhai, Wang, et al., 2007gas phase
Δr324.1 ± 6.3kcal/molD-EASidorov, Rudnyi, et al., 1983gas phase; value altered from reference due to conversion from electron convention to ion convention

F3Si- + Hydrogen cation = Trifluorosilane

By formula: F3Si- + H+ = HF3Si

Quantity Value Units Method Reference Comment
Δr358.1 ± 5.2kcal/molD-EAKawamata, Neigishi, et al., 1996gas phase; Vertical Detachment Energy: 2.76±0.05 eV.
Quantity Value Units Method Reference Comment
Δr350.4 ± 5.3kcal/molH-TSKawamata, Neigishi, et al., 1996gas phase; Vertical Detachment Energy: 2.76±0.05 eV.

C6H6N- + Hydrogen cation = Pyridine, 3-methyl-

By formula: C6H6N- + H+ = C6H7N

Quantity Value Units Method Reference Comment
Δr377.8 ± 3.1kcal/molG+TSDePuy, Kass, et al., 1988gas phase; Acid: 3-methylpyridine. Comparable to EtOH.
Quantity Value Units Method Reference Comment
Δr371.0 ± 3.0kcal/molIMRBDePuy, Kass, et al., 1988gas phase; Acid: 3-methylpyridine. Comparable to EtOH.

C6H6N- + Hydrogen cation = Pyridine, 2-methyl-

By formula: C6H6N- + H+ = C6H7N

Quantity Value Units Method Reference Comment
Δr376.8 ± 3.1kcal/molG+TSDePuy, Kass, et al., 1988gas phase; Acid: 2-methylpyridine. Between EtOH, iPrOH
Quantity Value Units Method Reference Comment
Δr370.0 ± 3.0kcal/molIMRBDePuy, Kass, et al., 1988gas phase; Acid: 2-methylpyridine. Between EtOH, iPrOH

C6H13O- + Hydrogen cation = 1-Butanol, 2,3-dimethyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr372.9 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr366.3 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C6H11O- + Hydrogen cation = Cyclopentanol, 2-methyl-, trans-

By formula: C6H11O- + H+ = C6H12O

Quantity Value Units Method Reference Comment
Δr372.4 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr365.8 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C4H5- + Hydrogen cation = 1,2-Butadiene

By formula: C4H5- + H+ = C4H6

Quantity Value Units Method Reference Comment
Δr384.3 ± 2.1kcal/molG+TSN/Agas phase; Relative to dGacid(MeOH)= 375. Acid: MeCH=C=CH2
Quantity Value Units Method Reference Comment
Δr376.2 ± 2.0kcal/molIMREN/Agas phase; Relative to dGacid(MeOH)= 375. Acid: MeCH=C=CH2

C7H15O- + Hydrogen cation = 2-Pentanol, 4,4-dimethyl-

By formula: C7H15O- + H+ = C7H16O

Quantity Value Units Method Reference Comment
Δr371.1 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr364.5 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C6H11O- + Hydrogen cation = Cyclopentanol, 1-methyl-

By formula: C6H11O- + H+ = C6H12O

Quantity Value Units Method Reference Comment
Δr372.7 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr366.1 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C5H11O- + Hydrogen cation = 2-Pentanol

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr373.3 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr366.7 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C6H6F3O4- + Hydrogen cation = C6H7F3O4

By formula: C6H6F3O4- + H+ = C6H7F3O4

Quantity Value Units Method Reference Comment
Δr339.1 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.
Quantity Value Units Method Reference Comment
Δr333.5 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.

C7H5F6O4- + Hydrogen cation = C7H6F6O4

By formula: C7H5F6O4- + H+ = C7H6F6O4

Quantity Value Units Method Reference Comment
Δr331.4 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.
Quantity Value Units Method Reference Comment
Δr324.2 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.

C6H2F6NO2- + Hydrogen cation = C6H3F6NO2

By formula: C6H2F6NO2- + H+ = C6H3F6NO2

Quantity Value Units Method Reference Comment
Δr324.3 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.
Quantity Value Units Method Reference Comment
Δr317.5 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: keto form of acid more stable.

C13H11F3NO5- + Hydrogen cation = C13H12F3NO5

By formula: C13H11F3NO5- + H+ = C13H12F3NO5

Quantity Value Units Method Reference Comment
Δr326.1 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr318.0 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C14H10F6NO5- + Hydrogen cation = C14H11F6NO5

By formula: C14H10F6NO5- + H+ = C14H11F6NO5

Quantity Value Units Method Reference Comment
Δr320.3 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr311.4 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C12H8F3N2O3- + Hydrogen cation = C12H9F3N2O3

By formula: C12H8F3N2O3- + H+ = C12H9F3N2O3

Quantity Value Units Method Reference Comment
Δr311.3 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr304.0 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C13H7F6N2O3- + Hydrogen cation = C13H8F6N2O3

By formula: C13H7F6N2O3- + H+ = C13H8F6N2O3

Quantity Value Units Method Reference Comment
Δr308.6 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr301.0 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C13H10BrF3NO5- + Hydrogen cation = C13H11BrF3NO5

By formula: C13H10BrF3NO5- + H+ = C13H11BrF3NO5

Quantity Value Units Method Reference Comment
Δr325.8 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr317.0 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C14H9BrF6NO5- + Hydrogen cation = C14H10BrF6NO5

By formula: C14H9BrF6NO5- + H+ = C14H10BrF6NO5

Quantity Value Units Method Reference Comment
Δr318.5 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr309.4 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C10H13F3NO5- + Hydrogen cation = C10H14F3NO5

By formula: C10H13F3NO5- + H+ = C10H14F3NO5

Quantity Value Units Method Reference Comment
Δr330.7 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr324.3 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C11H12F6NO5- + Hydrogen cation = C11H13F6NO5

By formula: C11H12F6NO5- + H+ = C11H13F6NO5

Quantity Value Units Method Reference Comment
Δr333.5 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr327.4 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C8H11N2O5- + Hydrogen cation = C8H12N2O5

By formula: C8H11N2O5- + H+ = C8H12N2O5

Quantity Value Units Method Reference Comment
Δr323.4 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr317.0 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C9H10F3N2O3- + Hydrogen cation = C9H11F3N2O3

By formula: C9H10F3N2O3- + H+ = C9H11F3N2O3

Quantity Value Units Method Reference Comment
Δr318.1 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr310.0 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C7H8N3O- + Hydrogen cation = C7H9N3O

By formula: C7H8N3O- + H+ = C7H9N3O

Quantity Value Units Method Reference Comment
Δr316.2 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr309.2 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C10H14NO5- + Hydrogen cation = C10H15NO5

By formula: C10H14NO5- + H+ = C10H15NO5

Quantity Value Units Method Reference Comment
Δr333.5 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr325.4 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C12H10NO3- + Hydrogen cation = C12H11NO3

By formula: C12H10NO3- + H+ = C12H11NO3

Quantity Value Units Method Reference Comment
Δr327.5 ± 2.1kcal/molG+TSMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.
Quantity Value Units Method Reference Comment
Δr319.9 ± 2.0kcal/molIMREMishima, Matsuoka, et al., 2004gas phase; Calc: enol form of acid more stable.

C6H13O- + Hydrogen cation = 2-Butanol, 2,3-dimethyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr372.0 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr365.4 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C6H13O- + Hydrogen cation = 2-Pentanol, 3-methyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr372.2 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr365.6 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C6H13O- + Hydrogen cation = 3-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr372.0 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr365.4 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C6H13O- + Hydrogen cation = 2-Pentanol, 4-methyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr372.2 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr365.6 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C7H13O- + Hydrogen cation = Cycloheptanol

By formula: C7H13O- + H+ = C7H14O

Quantity Value Units Method Reference Comment
Δr372.7 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr366.1 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C7H13O- + Hydrogen cation = Cyclohexanol, 1-methyl-

By formula: C7H13O- + H+ = C7H14O

Quantity Value Units Method Reference Comment
Δr371.9 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr365.3 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C6H13O- + Hydrogen cation = 1-Pentanol, 2-methyl-

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr373.1 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr366.5 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Dahlke and Kass, 1992
Dahlke, G.D.; Kass, S.R., The Ortho-dehydrophenoxy Anion, Int. J. Mass Spectrom. Ion Proc., 1992, 117, 633, https://doi.org/10.1016/0168-1176(92)80117-J . [all data]

Meyer and Kass, 2010
Meyer, M.M.; Kass, S.R., Experimental and Theoretical Gas-Phase Acidities, Bond Dissociation Energies, and Heats of Formation of HClOx, x=1-4, J. Phys. Chem. A, 2010, 114, 12, 4086-4092, https://doi.org/10.1021/jp100888k . [all data]

Alekseev, Fedorova, et al., 1983
Alekseev, V.I.; Fedorova, L.I.; Baluev, A.V., Mass Spectrometric Study of Thermochemical Characteristics of Perchloryl Fluoride and its Decomposition Product Chlorosyl Fluoride, Izv. Akad. Nauk SSR Ser. Khim. 1084, 1983. [all data]

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]

Mishima, Mustanir, et al., 2000
Mishima, M.; Mustanir; Eventova, I.; Rappoport, Z., Acidities and pK(Enol) values of stable simple enols in the gas phase, J. Chem. Soc. Perkin Trans., 2000, 2, 7, 1505-1512, https://doi.org/10.1039/b001155j . [all data]

Karpas and Klein, 1977
Karpas, Z.; Klein, F.S., The gas phase ion chemistry of carbonyl compounds: Formyl fluoride and a binary mixture of H2CO-F2CO or H2CO-Cl2CO, Int. J. Mass Spectrom. Ion Phys., 1977, 24, 137. [all data]

Thynne and MacNeil, 1970
Thynne, J.C.J.; MacNeil, K.A.G., Ionisation and dissociation of carbonyl fluoride and trifluoromethyl hypofluorite by electron impact, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 95. [all data]

Wenthold, Wierschke, et al., 1994
Wenthold, P.G.; Wierschke, S.G.; Nash, J.J.; Squires, R.R., Biradical thermochemistry from collision-induced dissociation threshold energy measurements .2. Experimental and theoretical studies of the Mechanism and Thermochemistry of Formation of alph, J. Am. Chem. Soc., 1994, 116, 16, 7378, https://doi.org/10.1021/ja00095a048 . [all data]

Zhai, Wang, et al., 2007
Zhai, H.J.; Wang, L.M.; Li, S.D.; Wang, L.S., Vibrationally resolved photoelectron spectroscopy of BO- and BO2-: A joint experimental and theoretical study, J. Phys. Chem. A, 2007, 111, 6, 1030-1035, https://doi.org/10.1021/jp0666939 . [all data]

Sidorov, Rudnyi, et al., 1983
Sidorov, L.N.; Rudnyi, E.B.; Nikitin, M.I.; Sorokin, I.D., Gas Phase Anion Exchange Reactions and the Determination of the Heats of Formation of Metaphosphate (PO3-), metaborate (BO2-), and perrhennate (ReO4-), Dokl. Akad. Nauk SSSR Ser. Khim., 1983, 272, 1172. [all data]

Kawamata, Neigishi, et al., 1996
Kawamata, H.; Neigishi, Y.; Kishi, R.; Iwata, S.; Nakajima, A.; Kaya, K., Photoelectron Spectroscopy of Silicon-Fluorine Binary Cluster Anions (SinFm-), J. Chem. Phys., 1996, 105, 13, 5369, https://doi.org/10.1063/1.472377 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Mishima, Matsuoka, et al., 2004
Mishima, M.; Matsuoka, M.; Lei, Y.X.; Rappoport, Z., Gas-phase acidities of disubstituted methanes and of enols of carboxamides substituted by electron-withdrawing groups, J. Org. Chem., 2004, 69, 18, 5947-5965, https://doi.org/10.1021/jo040196b . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References