Bismuth dimer

Constants of diatomic molecules

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through May, 1976

Symbols used in the table of constants
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 209Bi2
y x+15746.3 94.7 H 5.2        y → x R 15741.4 H
Singh, Nair, et al., 1971
x x 103.2 H 2.45         
Fragments of several absorption systems in the region 44800 - 52900 cm-1.
Almy and Sparks, 1933; Nakamura and Shidel, 1935; Topouzkhanian, Sibai, et al., 1974
D (42228) 1 129 H 9.7        D ← (A) 1 R 24485 H
missing citation
Three diffuse absorption bands at 40115, 40275, 40467 cm-1.
Almy and Sparks, 1933
C 36456 155.2 2 H 2.3 3        C ← X R 36447 H
missing citation; Nakamura and Shidel, 1935
I 33216.7 156.4 H 6.1        I → A V 15487.9 H
missing citation
H [32657.1] 4          H → A V 14851.6 H
missing citation
Continuous absorption with maximum at 32000 cm-1.
Almy and Sparks, 1933
G (29609.0) 5 107.0 5 H 0.2        (G → A) 5 R 11857.0 H
missing citation
E (26504.7) (63.5) 6 (8.5)  (0.01425) 6 (0.00015)     E → B (21470.9) 7 (Z)
Gerber and Broida, 1976
A 0u+ 17739.3 132.49 H 0.302 8 -0.0021 0.01968 9 10 0.000053  11  2.863 A ↔ X R 17719.2 H
missing citation; Nakamura and Shidel, 1935; Aslund, Barrow, et al., 1965; missing citation; Gerber and Broida, 1976
A' (8000) 12 141.2 0.37 -0.0019        
B (5000) 12 127.05 0.29 13 -0.001 (0.01790) (0.000046)      
X 1Σg+ 0 12 172.71 H 0.341 14 -0.0018 [0.022781] 10 0.000055 15  [1.50E-09]  2.6596  
X' (-1500) 12 154.3 0.42         


1Contrary to the conclusion of Almy and Sparks Almy and Sparks, 1933 that the violet system involves low vibrational levels of A, Gerber and Broida Gerber and Broida, 1976 consider it more probable that the absorption originates in high vibrational levels (v" ~20) of X', thereby reducing to (Te= 26000 cm-1) Gerber and Broida, 1976. Additional unassigned diffuse absorption features in the region 22000 - 24000 cm-1.
2 Nakamura and Shidel, 1935 give ωe 146.0 Nakamura and Shidel, 1935, ωexe = 0.50 Nakamura and Shidel, 1935. All bands except those with v'=1 are diffuse. Observed to v'=4. At shorter wavelengths are additional features probably belonging to C←X but not assigned by Almy and Sparks, 1933.
3The value of ωexe given by Almy and Sparks, 1933 is clearly 2ωexe. The constants listed above take account of this correction.
4Only v'=0.
5Gerber et al. Gerber and Broida, 1976 have found very similar constants (ωe = 105.68 Gerber and Broida, 1976, ωexe = 0.63 Gerber and Broida, 1976) for the lower state of an unidentified transition in the laser photoluminescence spectrum and have tentatively identified this lower state with the upper state of Reddy and Ali's Reddy and Ali, 1970 G → A system. They suggest that the emission from G involves high vibrational levels (v" ~ 50) of X, rather than v=0,...,4 of A, and they estimate Te ~ 20000 Gerber and Broida, 1976.
6Constants derived from intensity data; see Gerber and Broida, 1976.
7Recalculated from data in Gerber and Broida, 1976.
8ωeze = +0.000055 Reddy and Ali, 1970. Slightly different constants in Almy and Sparks, 1933, Gerber and Broida, 1976.
9Extrapolated from B8, B9, B11 Aslund, Barrow, et al., 1965.
10RKR potential curves Rao and Lakshman, 1970, Gerber and Broida, 1976.
11D8 = 1.71E-9.
12All four states give rise to long lower state progressions in the laser photoluminescence spectrum of Bi2 Gerber and Broida, 1976. Their relative energies were estimated Gerber and Broida, 1976 from the temperature dependence of the photoluminescence intensities. The upper levels of the transitions, except those belonging to A and E, could not be identified.
13missing note
14ωeze = +0.000010 Reddy and Ali, 1970. Slightly different constants in Almy and Sparks, 1933, Gerber and Broida, 1976.
15From the laser photoluminescence spectrum Gerber and Broida, 1976, adjusted for best overall fit of observed with calculated intensities.
16The state designations adopted in the Bi2 table agree with those of Gerber and Broida, 1976. They are compared below with designations used elsewhere: <TABLE> <TR> <TD>This table, and Gerber and Broida, 1976:</TD> <TD> X' </TD> <TD> X </TD> <TD> B </TD> <TD> A' </TD> <TD> A </TD> <TD> E </TD> <TD> G </TD> <TD> H </TD> <TD> I </TD> <TD> C </TD> <TD> D </TD> </TR> <TR> <TD> Almy and Sparks, 1933 </TD> <TD></TD> <TD> A </TD> <TD></TD> <TD></TD> <TD> B </TD> <TD></TD> <TD></TD> <TD></TD> <TD></TD> <TD> C </TD> <TD> D </TD> </TR> <TR> <TD> Herzberg, 1950 </TD> <TD></TD> <TD> X </TD> <TD></TD> <TD></TD> <TD> B </TD> <TD></TD> <TD></TD> <TD></TD> <TD></TD> <TD> D </TD> <TD> E </TD> </TR> <TR> <TD> Aslund, Barrow, et al., 1965 </TD> <TD></TD> <TD> X </TD> <TD></TD> <TD></TD> <TD> A </TD> <TD></TD> <TD></TD> <TD></TD> <TD></TD> <TD></TD> <TD></TD> </TR> <TR> <TD> Rosen, 1970 </TD> <TD></TD> <TD> X </TD> <TD></TD> <TD></TD> <TD> A </TD> <TD></TD> <TD></TD> <TD></TD> <TD></TD> <TD> C </TD> <TD> D </TD> </TR> <TR> <TD> Reddy and Ali, 1970 </TD> <TD></TD> <TD> X </TD> <TD></TD> <TD></TD> <TD> A </TD> <TD></TD> <TD> G </TD> <TD> H </TD> <TD> I </TD> <TD> D </TD> <TD> E </TD> </TR> </TABLE>
17Thermochemical value (mass-spectrom.) Kohl, Uy, et al., 1967, Rovner, Drowart, et al., 1967, calculated for a 1Σ ground state and disregarding other low-lying states.


Go To: Top, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Singh, Nair, et al., 1971
Singh, J.; Nair, K.P.R.; Rai, D.K., A new band system in the emission spectrum of diatomic bismuth, Spectrosc. Lett., 1971, 4, 313. [all data]

Almy and Sparks, 1933
Almy, G.M.; Sparks, F.M., The absorption spectrum of diatomic bismuth, Phys. Rev., 1933, 44, 365. [all data]

Nakamura and Shidel, 1935
Nakamura, G.; Shidel, T., 3. The band spectra of elements of the fifth group, Jpn. J. Phys., 1935, 10, 11. [all data]

Topouzkhanian, Sibai, et al., 1974
Topouzkhanian, A.; Sibai, A.M.; d'Incan, J., Observation et analyse vibrationnelle de nouveauz systemes de bandes d'absorption de molecules lourdes dans l'ultraviolet lointain Cas de Sb2 et Bi2, Z. Naturforsch. A, 1974, 29, 436. [all data]

Gerber and Broida, 1976
Gerber, G.; Broida, H.P., Electronic states and molecular constants of Bi2, J. Chem. Phys., 1976, 64, 3423. [all data]

Aslund, Barrow, et al., 1965
Aslund, N.; Barrow, R.F.; Richards, W.G.; Travis, D.N., Rotational analysis of bands of the B-X system of Cu2 and of the A-X system of Bi2, Ark. Fys., 1965, 30, 171. [all data]

Reddy and Ali, 1970
Reddy, S.P.; Ali, M.K., The emission spectrum of diatomic bismuth, J. Mol. Spectrosc., 1970, 35, 285. [all data]

Rao and Lakshman, 1970
Rao, T.V.R.; Lakshman, S.V.J., True potential energy curves for the bands of the Bi2 molecule, Indian J. Pure Appl. Phys., 1970, 8, 785. [all data]

Herzberg, 1950
Herzberg, G., Molecular spectra and molecular structure. I. Spectra of diatomic molecules, Pub. D. Van Nostrand Company, Inc., Princeton, New Jersey, 1950, 0. [all data]

Rosen, 1970
Rosen, B., International tables of selected constants. 17. Spectroscopic data relative to diatomic molecules, Pub. Pergamon Press, Oxford, 1970, 0. [all data]

Kohl, Uy, et al., 1967
Kohl, F.J.; Uy, O.M.; Carlson, K.D., Cross sections for electron-impact fragmentation and dissociation energies of the dimer and tetramer of bismuth, J. Chem. Phys., 1967, 47, 2667. [all data]

Rovner, Drowart, et al., 1967
Rovner, L.; Drowart, A.; Drowart, J., Mass spectrometric determination of dissociation energies of molecules Bi2, Bi3, Bi4, and BiPb, Trans. Faraday Soc., 1967, 63, 2906. [all data]


Go To: Top, Constants of diatomic molecules, References