1,2-Benzenediol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H5O2- + Hydrogen cation = 1,2-Benzenediol

By formula: C6H5O2- + H+ = C6H6O2

Quantity Value Units Method Reference Comment
Δr339.5 ± 2.1kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr339.8 ± 2.6kcal/molG+TSKebarle and McMahon, 1977gas phase
Quantity Value Units Method Reference Comment
Δr332.7 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr332.9 ± 2.0kcal/molIMREKebarle and McMahon, 1977gas phase

IR Spectrum

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
State gas
Instrument HP-GC/MS/IRD

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Reaction thermochemistry data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1681
NIST MS number 227771

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Dewar, Kubba, et al., 1958
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 1289
Instrument n.i.g.
Melting point 105
Boiling point 245

Gas Chromatography

Go To: Top, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-51197.da Silva, Borba, et al., 199930. m/0.25 mm/0.25 μm, H2, 4. K/min; Tstart: 50. C; Tend: 290. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryLM-51199.8Ré-Poppi and Santiago-Silva, 200530. m/0.25 mm/0.25 μm, He; Program: 60C(2min) => 15C/min => 180C => 5C/min => 280C (10min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedApieson L140.1215.Hedin, Minyard, et al., 1967Nitrogen, Chromosorb W HMDS (60-80 mesh); Column length: 1.8 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS1219.Jerkovic and Marijanovic, 201030. m/0.25 mm/0.25 μm, Helium, 70. C @ 2. min, 3. K/min, 200. C @ 18. min
CapillaryZB-51210.Harrison and Priest, 200930. m/0.25 mm/0.25 μm, Helium, 40. C @ 1. min, 6. K/min, 280. C @ 9. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-51197.Yusuf and Bewaji, 2011Helium; Column length: 30. m; Column diameter: 0.32 mm; Program: not specified
CapillaryZB-51201.de Simon, Estruelas, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 45 0C 3 0C/min -> 230 0C (10 min) 10 0C/min -> 270 0C (21 min)

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax2661.Moon and Shibamoto, 201060. m/0.25 mm/0.50 μm, Helium, 40. C @ 5. min, 2. K/min, 210. C @ 70. min

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-102657.de Simon, Estruelas, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 45 0C 3 0C/min -> 230 0C (10 min) 10 0C/min -> 270 0C (21 min)

References

Go To: Top, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B., Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria, J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032 . [all data]

Dewar, Kubba, et al., 1958
Dewar, M.J.S.; Kubba, V.P.; Pettit, R., New heteroaromatic compounds. Part II. Boron compounds isoconjugate with indole, 2:3-benzofuran, and thionaphthen, J. Chem. Soc., 1958, 3076-3079. [all data]

da Silva, Borba, et al., 1999
da Silva, U.F.; Borba, E.L.; Semir, J.; Marsaioli, A.J., A simple solid injection device for the analyses of Bulbophyllum (Orchidaceae) volatiles, Phytochemistry, 1999, 50, 1, 31-34, https://doi.org/10.1016/S0031-9422(98)00459-2 . [all data]

Ré-Poppi and Santiago-Silva, 2005
Ré-Poppi, N.; Santiago-Silva, M., Polycyclic aromatic hydrocarbons and other selected organic compounds in ambient air of Campo Grande City, Brazil, Atmos. Environ., 2005, 39, 16, 2839-2850, https://doi.org/10.1016/j.atmosenv.2004.10.006 . [all data]

Hedin, Minyard, et al., 1967
Hedin, P.A.; Minyard, J.P.; Thompson, A.C., Chromatographic and spectral analysis of phenolic acids and related compounds, J. Chromatogr., 1967, 30, 43-53, https://doi.org/10.1016/S0021-9673(00)84111-4 . [all data]

Jerkovic and Marijanovic, 2010
Jerkovic, I.; Marijanovic, Z., Oak (Quercus frainetto Ten.) honeydaw honey - approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP assay), Molecules, 2010, 15, 5, 3744-3756, https://doi.org/10.3390/molecules15053744 . [all data]

Harrison and Priest, 2009
Harrison, B.M.; Priest, F.G., Composition of peaks used in the preparation of malt for Scotch Whisky production - influence of geographical source and extraction depth, J. Agric. Food Chem., 2009, 57, 6, 2385-2391, https://doi.org/10.1021/jf803556y . [all data]

Yusuf and Bewaji, 2011
Yusuf, O.K.; Bewaji, C.O., GC-MS of volatile components of fermented wheat germ extract, J. Cereals Oilseeds, 2011, 2, 3, 38-42. [all data]

de Simon, Estruelas, et al., 2009
de Simon, B.F.; Estruelas, E.; Munoz, A.M.; Cadahia, E.; Sanz, M., Volatile compounds in acacia, chestnut, cherry, ash, and oak woods, with a view to their use in cooperage, J. Agric. Food Chem., 2009, 57, 8, 3217-3227, https://doi.org/10.1021/jf803463h . [all data]

Moon and Shibamoto, 2010
Moon, J.-K.; Shibamoto, T., Formation of volatile chemicals from thermal degradation of less volatile cofee components: quinic acid, caffeic acid, and chlorogenic acid, J. Agric. Food Chem., 2010, 58, 9, 5465-5470, https://doi.org/10.1021/jf1005148 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References