Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

tungsten dioxide


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Deltafgas76.57kJ/molReviewChase, 1998Data last reviewed in September, 1966
Quantity Value Units Method Reference Comment
gas,1 bar285.50J/mol*KReviewChase, 1998Data last reviewed in September, 1966

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 1100.1100. - 6000.
A 29.8159458.09735
B 66.735220.252121
C -60.20860-0.174854
D 19.381000.034110
E -0.095578-2.617933
F 64.8829652.14896
G 303.6475345.3043
H 76.5672076.56720
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in September, 1966 Data last reviewed in September, 1966

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Deltafsolid-589.69kJ/molReviewChase, 1998Data last reviewed in September, 1966
Quantity Value Units Method Reference Comment
solid50.50J/mol*KReviewChase, 1998Data last reviewed in September, 1966

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 1300.1300. - 3000.
A 53.40876-183.2441
B 53.53219263.9296
C -39.01170-87.96023
D 11.1201910.73338
E -0.93124177.78140
F -610.8054-384.2812
G 95.57260-50.93351
H -589.6930-589.6930
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in September, 1966 Data last reviewed in September, 1966

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to O2W+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference Comment
9.5 ± 0.5EIBalducci, Gigli, et al., 1981LLK
9.6 ± 0.3EIGusarov, Gotkis, et al., 1975LLK
9.9 ± 1.0EIYamdagni, Pupp, et al., 1970RDSH
9.8EIDrowart, Exsteen, et al., 1964RDSH
9.9 ± 0.6EIDeMaria, Burns, et al., 1960RDSH

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   ?


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 12672 Ne 605 790 Weltner and McLeod, 1965

State:   3A1 ?


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 8010 ± 100 L gas Davico, Schwartz, et al., 1999


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 945 ± 25 gas PE Davico, Schwartz, et al., 1999
2 Bend 340 ± 20 gas PE Davico, Schwartz, et al., 1999

State:   1B1 ?


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 6260 ± 100 L gas Davico, Schwartz, et al., 1999


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 970 ± 15 gas PE Davico, Schwartz, et al., 1999

State:   a


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 2640 ± 100 L gas Davico, Schwartz, et al., 1999


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 995 ± 25 gas PE Davico, Schwartz, et al., 1999
2 Bend 320 ± 15 gas PE Davico, Schwartz, et al., 1999

State:   ?


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 972 Ne AB Weltner and McLeod, 1965

State:   ?


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 2 Bend 300 Ne AB Weltner and McLeod, 1965

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 1030.2 Ne IR Lorenz and Bondybey, 1999
Zhou and Andrews, 1999
1 Sym. stretch 1025.0 Ar IR Zhou and Andrews, 1999
2 Bend 325 ± 15 gas PE Davico, Schwartz, et al., 1999
b2 3 Asym. stretch 983.8 Ne IR Lorenz and Bondybey, 1999
Zhou and Andrews, 1999
3 Asym. stretch 977.9 Ar IR Zhou and Andrews, 1999
3 Asym. stretch 975.5 Kr IR Green and Ervin, 1981

Additional references: Jacox, 1998, page 175; Jacox, 2003, page 105

Notes

LLower bound
oEnergy separation between the v = 0 levels of the excited and electronic ground states.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Balducci, Gigli, et al., 1981
Balducci, G.; Gigli, G.; Guido, M., Dissociation energies of the molecules CrPO2(g) and CoO(g) by high-temperature mass spectrometry, J. Chem. Soc. Faraday Trans. 2, 1981, 77, 1107. [all data]

Gusarov, Gotkis, et al., 1975
Gusarov, A.V.; Gotkis, I.S.; Gorokhov, L.N., Mass-spectrometric study of the evaporation products of the B2O3 - WO3 system; Heat of formation of BWO4(gas), High Temp., 1975, 13, 324. [all data]

Yamdagni, Pupp, et al., 1970
Yamdagni, R.; Pupp, C.; Porter, R.F., Mass spectrometric study of the evaporation of lithium and sodium molybdates and tungstates, J. Inorg. Nucl. Chem., 1970, 32, 3509. [all data]

Drowart, Exsteen, et al., 1964
Drowart, J.; Exsteen, G.; Verhaegen, G., Mass spectrometric determination of the dissociation energy of the molecules MgO, CaO, SrO and Sr2O, J. Chem. Soc. Faraday Trans., 1964, 60, 1920. [all data]

DeMaria, Burns, et al., 1960
DeMaria, G.; Burns, R.P.; Drowart, J.; Inghram, M.G., Mass spectrometric study of gaseous molybdenum, tungsten, and uranium oxides, J. Chem. Phys., 1960, 32, 1373. [all data]

Weltner and McLeod, 1965
Weltner, W., Jr.; McLeod, D., Jr., Spectroscopy of tungsten oxide molecules in neon and argon matrices at 4° and 20°K, J. Mol. Spectrosc., 1965, 17, 2, 276, https://doi.org/10.1016/0022-2852(65)90167-0 . [all data]

Davico, Schwartz, et al., 1999
Davico, G.E.; Schwartz, R.L.; Ramond, T.M.; Lineberger, W.C., An Experimental Study of the Low-lying Electron States of WO2, J. Phys. Chem. A, 1999, 103, 31, 6167, https://doi.org/10.1021/jp9911752 . [all data]

Lorenz and Bondybey, 1999
Lorenz, M.; Bondybey, V.E., Isotopically resolved spectra of tungsten oxides in solid neon, Chem. Phys., 1999, 241, 1, 127, https://doi.org/10.1016/S0301-0104(98)00409-1 . [all data]

Zhou and Andrews, 1999
Zhou, M.; Andrews, L., Infrared spectra and density functional calculations of the CrO[sub 2][sup -], MoO[sub 2][sup -], and WO[sub 2][sup -] molecular anions in solid neon, J. Chem. Phys., 1999, 111, 9, 4230, https://doi.org/10.1063/1.479721 . [all data]

Green and Ervin, 1981
Green, D.W.; Ervin, K.M., Infrared spectra of matrix-isolated tungsten oxides, J. MOl. Spectrosc., 1981, 89, 1, 145, https://doi.org/10.1016/0022-2852(81)90166-1 . [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, NIST Free Links, References