Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Dimethyl ether

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Kenneth Kroenlein director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil249. ± 1.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus131.65KN/AAnonymous, 1968TRC
Tfus135.2KN/AMaass and Boomer, 1922Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Ttriple131.64KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple131.66KN/AKennedy, Sagenkahn, et al., 1941Uncertainty assigned by TRC = 0.06 K; TRC
Quantity Value Units Method Reference Comment
Tc401. ± 2.KAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Pc54. ± 3.barAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.164l/molN/AZawisza and Glowka, 1970Uncertainty assigned by TRC = 0.003 l/mol; TRC
Quantity Value Units Method Reference Comment
rhoc5.351mol/lN/AEdwards and Maass, 1935Uncertainty assigned by TRC = 0.43 mol/l; TRC
rhoc4.895mol/lN/ATapp, Steacie, et al., 1933Uncertainty assigned by TRC = 0.65 mol/l; TRC
rhoc5.891mol/lN/ACardoso and Coppola, 1923Uncertainty assigned by TRC = 0.07 mol/l; extraplation of rectilinear diameter, from obs L and G densities, to Tc = 126.9 deg C, from previous literature; TRC
Quantity Value Units Method Reference Comment
Deltavap19.3kJ/molN/AMajer and Svoboda, 1985 
Deltavap18.5kJ/molN/AAmbrose, Ellender, et al., 1976Based on data from 171. - 248. K.; AC

Enthalpy of vaporization

DeltavapH (kJ/mol) Temperature (K) Method Reference Comment
21.510248.34N/AKennedy, Sagenkahn, et al., 1941, 2P = 101.325 kPa; DH
21.51248.3N/AMajer and Svoboda, 1985 
22.6250.AStephenson and Malanowski, 1987Based on data from 183. - 265. K.; AC
22.8234.AStephenson and Malanowski, 1987Based on data from 180. - 249. K.; AC
21.2308.AStephenson and Malanowski, 1987Based on data from 293. - 360. K.; AC
21.1364.AStephenson and Malanowski, 1987Based on data from 349. - 400. K.; AC
22.2256.AStephenson and Malanowski, 1987Based on data from 241. - 303. K.; AC
21.4248.N/AAmbrose, Ellender, et al., 1976Based on data from 171. - 248. K.; AC
22.7233.N/AKennedy, Sagenkahn, et al., 1941, 2Based on data from 195. - 248. K.; AC
21.5 ± 0.1248.CKennedy, Sagenkahn, et al., 1941, 2AC

Entropy of vaporization

DeltavapS (J/mol*K) Temperature (K) Reference Comment
86.61248.34Kennedy, Sagenkahn, et al., 1941, 2P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
194.93 - 248.244.11475894.669-30.604Kennedy, Sagenkahn, et al., 1941, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

DeltafusH (kJ/mol) Temperature (K) Reference Comment
4.9363131.66Kennedy, Sagenkahn, et al., 1941, 2DH
4.94131.7Domalski and Hearing, 1996AC

Entropy of fusion

DeltafusS (J/mol*K) Temperature (K) Reference Comment
37.49131.66Kennedy, Sagenkahn, et al., 1941, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


References

Go To: Top, Phase change data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Anonymous, 1968
Anonymous, X., Chemicals and Plastics Physical Properties, 1968, Union Carbide Corp., product bulletin, 1968. [all data]

Maass and Boomer, 1922
Maass, O.; Boomer, E.H., Vapor densities at low pressures and over an extended temperature range: I the properties of ethylene oxide compared to oxygen compounds of similar molecular weight, J. Am. Chem. Soc., 1922, 44, 1709-1728. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Kennedy, Sagenkahn, et al., 1941
Kennedy, R.M.; Sagenkahn, M.; Aston, J.G., The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Dimethyl Ether. The Density of Gaseous Dimethyl Ether, J. Am. Chem. Soc., 1941, 63, 2267-72. [all data]

Zawisza and Glowka, 1970
Zawisza, A.C.; Glowka, S., Liquid-vapour equilibria and thermodynamic functions of dimethyl ether - sulphur dioxide system up to 300c and 77.81 atmospheres, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1970, 18, 549-54. [all data]

Edwards and Maass, 1935
Edwards, J.; Maass, O., Density and Adsorption Studies in the Region of the Critical Temperature: System Dimethyl-ether-alumina., Can. J. Res., Sect. A, 1935, 12, 357-71. [all data]

Tapp, Steacie, et al., 1933
Tapp, J.S.; Steacie, E.W.R.; Maass, O., Density of a Vapor in Equilibrium with a Liquid Near the Critical Temperature., Can. J. Res., 1933, 9, 217-39. [all data]

Cardoso and Coppola, 1923
Cardoso, E.; Coppola, A.A., Experimental researches on some thermal properties of gas I the densities of coexisting phases of methyl ether, J. Chim. Phys. Phys.-Chim. Biol., 1923, 20, 337-46. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers, The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2 . [all data]

Kennedy, Sagenkahn, et al., 1941, 2
Kennedy, R.M.; Sagenkahn, M.; Aston, J.G., The heat capacity and entropy, heats of fusion and vaporization, and the vapor pressure of dimethyl ether. The density of gaseous dimethyl ether, J. Am. Chem. Soc., 1941, 63, 2267-2272. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]


Notes

Go To: Top, Phase change data, References