Octane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-49.88kcal/molN/AGood, 1972Value computed using ΔfHliquid° value of -250.3±1.8 kj/mol from Good, 1972 and ΔvapH° value of 41.6 kj/mol from Prosen and Rossini, 1945.; DRB
Δfgas-49.82 ± 0.16kcal/molCcbProsen and Rossini, 1945see Prosen and Rossini, 1944; ALS
Quantity Value Units Method Reference Comment
gas111.63 ± 0.22cal/mol*KN/AScott D.W., 1974This reference does not contain the original experimental data. Experimental entropy value is based on the results [ Messerly J.F., 1967] for S(liquid).; GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
55.63 ± 0.11385.65Hossenlopp I.A., 1981Please also see Barrow G.M., 1951.; GT
57.11 ± 0.11398.15
58.000405.7
59.89 ± 0.12423.15
62.86 ± 0.13448.15
64.699462.5
65.69 ± 0.13473.15
68.35 ± 0.14498.15
70.600522.7
70.98 ± 0.14523.15

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
34.601200.Scott D.W., 1974, 2Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, Scott D.W., 1974, 2]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT
41.991273.15
44.88 ± 0.1298.15
45.100300.
57.299400.
68.549500.
78.100600.
86.099700.
92.801800.
98.401900.
103.101000.
107.201100.
110.701200.
114.001300.
117.001400.
119.001500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-59.82 ± 0.42kcal/molCcbGood, 1972ALS
Δfliquid-59.74 ± 0.20kcal/molCcbProsen and Rossini, 1945see Prosen and Rossini, 1944; ALS
Quantity Value Units Method Reference Comment
Δcliquid-1300. ± 30.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
liquid86.329cal/mol*KN/AFinke, Gross, et al., 1954DH
liquid85.99cal/mol*KN/AHuffman, Parks, et al., 1931Extrapolation below 90 K, 75.73 J/mol*K.; DH
liquid85.99cal/mol*KN/AParks, Huffman, et al., 1930Extrapolation below 90 K, 77.19 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
60.87299.Czarnota, 1993DH
62.667318.15Banipal, Garg, et al., 1991T = 318 to 373 K. p = 0.1 MPa.; DH
61.109298.15Trejo, Costas, et al., 1991DH
61.109298.15Andreoli-Ball, Patterson, et al., 1988DH
61.109298.15Perez-Casas, Aicart, et al., 1988DH
60.734298.15Benson and D'Arcy, 1986DH
61.109298.15Tardajos, Aicart, et al., 1986DH
60.750298.15Lainez, Grolier, et al., 1985DH
60.641298.15Lainez, Rodrigo, et al., 1985DH
60.33297.54Grigor'ev and Andolenko, 1984T = 297 to 410 K. Unsmoothed experimental datum given as 2.210 KJ/kg*K.; DH
60.712298.15Roux, Grolier, et al., 1984DH
60.33298.Zaripov, 1982T = 298, 323, 363 K.; DH
60.724298.15Grolier, Inglese, et al., 1981DH
60.449298.15Shakirov and Lyubarskii, 1980T = 65 to 300 K.; DH
60.52298.Grigor'ev, Rastorguev, et al., 1975T = 305 to 463 K.; DH
60.741298.15Finke, Gross, et al., 1954T = 12 to 300 K.; DH
60.691299.8Connolly, Sage, et al., 1951T = 80 to 200 F.; DH
60.681298.15Osborne and Ginnings, 1947T = 293 to 318 K.; DH
60.11298.3Huffman, Parks, et al., 1931T = 92 to 298 K. Value is unsmoothed experimental datum.; DH
59.20293.7Parks, Huffman, et al., 1930T = 85 to 294 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil398.7 ± 0.5KAVGN/AAverage of 75 out of 89 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus216.3 ± 0.3KAVGN/AAverage of 39 out of 41 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple216.2 ± 0.6KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tc568.9 ± 0.5KAVGN/AAverage of 23 values; Individual data points
Quantity Value Units Method Reference Comment
Pc24.6 ± 0.1atmAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.492l/molN/AAmbrose and Tsonopoulos, 1995 
Quantity Value Units Method Reference Comment
ρc2.034 ± 0.007mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap10. ± 1.kcal/molAVGN/AAverage of 10 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
8.224398.8N/AMajer and Svoboda, 1985 
9.42338.EBEwing and Ochoa, 2003Based on data from 323. - 563. K.; AC
9.80312.AStephenson and Malanowski, 1987Based on data from 297. - 400. K.; AC
10.6263.AStephenson and Malanowski, 1987Based on data from 216. - 278. K.; AC
8.68411.AStephenson and Malanowski, 1987Based on data from 396. - 432. K.; AC
8.48443.AStephenson and Malanowski, 1987Based on data from 428. - 510. K.; AC
8.34521.AStephenson and Malanowski, 1987Based on data from 506. - 569. K.; AC
9.85310.N/APaul, Krug, et al., 1986Based on data from 295. - 402. K.; AC
10.0313.N/AMichou-Saucet, Jose, et al., 1984Based on data from 298. - 333. K.; AC
9.68 ± 0.02313.CMajer, Svoboda, et al., 1979AC
9.35 ± 0.02333.CMajer, Svoboda, et al., 1979AC
9.03 ± 0.02353.CMajer, Svoboda, et al., 1979AC
10.3282.N/ACarruth and Kobayashi, 1973Based on data from 217. - 297. K.; AC
9.08 ± 0.02311.CMcKay and Sage, 1960AC
8.77 ± 0.02328.CMcKay and Sage, 1960AC
8.46 ± 0.02344.CMcKay and Sage, 1960AC
9.37341.MMWillingham, Taylor, et al., 1945Based on data from 326. - 400. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. - 426.
A (kcal/mol) 13.97
α 0.1834
β 0.3324
Tc (K) 568.8
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
216.59 - 297.105.19551936.281-20.143Carruth and Kobayashi, 1973Coefficents calculated by NIST from author's data.
326.08 - 399.724.042961355.126-63.633Williamham, Taylor, et al., 1945 

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
16.3216.BBondi, 1963AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Method Reference Comment
4.9570216.38N/AFinke, Gross, et al., 1954DH
5.21216.6DSCMondieig, Rajabalee, et al., 2004AC
4.957216.4N/ADomalski and Hearing, 1996AC
4.9359215.8N/AHuffman, Parks, et al., 1931DH
4.8021215.6N/AParks, Huffman, et al., 1930DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
22.91216.38Finke, Gross, et al., 1954DH
22.9215.8Huffman, Parks, et al., 1931DH
22.27215.6Parks, Huffman, et al., 1930DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

1-Octene + Hydrogen = Octane

By formula: C8H16 + H2 = C8H18

Quantity Value Units Method Reference Comment
Δr-30. ± 2.kcal/molAVGN/AAverage of 7 values; Individual data points

Hydrogen + 4-Octene, (Z)- = Octane

By formula: H2 + C8H16 = C8H18

Quantity Value Units Method Reference Comment
Δr-28.25 ± 0.1kcal/molChydRogers, Dejroongruang, et al., 1992liquid phase; solvent: Cyclohexane
Δr-28.62 ± 0.52kcal/molChydRogers and Siddiqui, 1975liquid phase; solvent: n-Hexane
Δr-27.39 ± 0.14kcal/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid

2Hydrogen + 4-Octyne = Octane

By formula: 2H2 + C8H14 = C8H18

Quantity Value Units Method Reference Comment
Δr-64.22 ± 0.26kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane
Δr-62.80 ± 0.16kcal/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid
Δr-62.8kcal/molChydSicher, Svoboda, et al., 1966liquid phase; solvent: Acetic acid

2Hydrogen + 1-Octyne = Octane

By formula: 2H2 + C8H14 = C8H18

Quantity Value Units Method Reference Comment
Δr-69.55 ± 0.47kcal/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane
Δr-69.15 ± 0.65kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane

Octane = Pentane, 3-ethyl-3-methyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-0.73 ± 0.21kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Heptane, 2-methyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-1.25 ± 0.22kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Heptane, 3-methyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-0.61 ± 0.19kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Heptane, 4-methyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-0.44 ± 0.19kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Hexane, 3-ethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-0.14 ± 0.17kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Hexane, 2,2-dimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-2.89 ± 0.16kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Hexane, 2,3-dimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-0.67 ± 0.28kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Hexane, 2,4-dimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-1.73 ± 0.18kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Hexane, 2,5-dimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-2.53 ± 0.28kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Hexane, 3,3-dimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-1.85 ± 0.17kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Hexane, 3,4-dimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-0.49 ± 0.29kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Pentane, 2,2,3-trimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-1.70 ± 0.28kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Pentane, 2,2,4-trimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-2.24 ± 0.25kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Pentane, 2,3,3-trimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-0.89 ± 0.26kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Pentane, 2,3,4-trimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-1.25 ± 0.32kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Butane, 2,2,3,3-tetramethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-4.50 ± 0.38kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Octane = Pentane, 3-ethyl-2-methyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr0.05 ± 0.22kcal/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

Hydrogen + 2-Octene, (E)- = Octane

By formula: H2 + C8H16 = C8H18

Quantity Value Units Method Reference Comment
Δr-27.6 ± 0.2kcal/molChydRogers, Dejroongruang, et al., 1992liquid phase; solvent: Cyclohexane

Hydrogen + 3-Octene, (Z)- = Octane

By formula: H2 + C8H16 = C8H18

Quantity Value Units Method Reference Comment
Δr-28.15 ± 0.1kcal/molChydRogers, Dejroongruang, et al., 1992liquid phase; solvent: Cyclohexane

Hydrogen + 4-Octene, (E)- = Octane

By formula: H2 + C8H16 = C8H18

Quantity Value Units Method Reference Comment
Δr-27.49 ± 0.1kcal/molChydRogers, Dejroongruang, et al., 1992liquid phase; solvent: Cyclohexane

Hydrogen + 3-Octene, (E)- = Octane

By formula: H2 + C8H16 = C8H18

Quantity Value Units Method Reference Comment
Δr-27.68 ± 0.1kcal/molChydRogers, Dejroongruang, et al., 1992liquid phase; solvent: Cyclohexane

2Hydrogen + 3-Octyne = Octane

By formula: 2H2 + C8H14 = C8H18

Quantity Value Units Method Reference Comment
Δr-64.80 ± 0.19kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane

Hydrogen + 2-Octene, (Z)- = Octane

By formula: H2 + C8H16 = C8H18

Quantity Value Units Method Reference Comment
Δr-28.54 ± 0.26kcal/molChydRogers, Dejroongruang, et al., 1992liquid phase; solvent: Cyclohexane

2Hydrogen + 2-Octyne = Octane

By formula: 2H2 + C8H14 = C8H18

Quantity Value Units Method Reference Comment
Δr-65.10 ± 0.11kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane

4Hydrogen + 1,7-Octadiyne = Octane

By formula: 4H2 + C8H10 = C8H18

Quantity Value Units Method Reference Comment
Δr-139.7 ± 1.2kcal/molChydFlitcroft, Skinner, et al., 1957liquid phase

3Hydrogen + 1-Octen-3-yne = Octane

By formula: 3H2 + C8H12 = C8H18

Quantity Value Units Method Reference Comment
Δr-93.4 ± 1.5kcal/molChydFlitcroft and Skinner, 1958liquid phase

4Hydrogen + Octa-1,2,6,7-teraene = Octane

By formula: 4H2 + C8H10 = C8H18

Quantity Value Units Method Reference Comment
Δr-138.0kcal/molChydRoth, Scholz, et al., 1982liquid phase

Octane = Hydrogen + 2-Octene, (E)-

By formula: C8H18 = H2 + C8H16

Quantity Value Units Method Reference Comment
Δr27.192kcal/molEqkEliseev, 1986liquid phase

Octane = Hydrogen + 3-Octene, (Z)-

By formula: C8H18 = H2 + C8H16

Quantity Value Units Method Reference Comment
Δr28.260kcal/molEqkEliseev, 1986liquid phase

Octane = Hydrogen + 3-Octene, (E)-

By formula: C8H18 = H2 + C8H16

Quantity Value Units Method Reference Comment
Δr27.261kcal/molEqkEliseev, 1986liquid phase

Octane = Hydrogen + 4-Octene, (E)-

By formula: C8H18 = H2 + C8H16

Quantity Value Units Method Reference Comment
Δr27.261kcal/molEqkEliseev, 1986liquid phase

Octane = Hydrogen + 2-Octene, (Z)-

By formula: C8H18 = H2 + C8H16

Quantity Value Units Method Reference Comment
Δr28.191kcal/molEqkEliseev, 1986liquid phase

Octane = Hydrogen + 4-Octene, (Z)-

By formula: C8H18 = H2 + C8H16

Quantity Value Units Method Reference Comment
Δr28.260kcal/molEqkEliseev, 1986liquid phase

Octane = 1-Octene + Hydrogen

By formula: C8H18 = C8H16 + H2

Quantity Value Units Method Reference Comment
Δr30.000kcal/molEqkEliseev, 1986liquid phase

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 660
NIST MS number 229407

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good, 1972
Good, W.D., The enthalpies of combustion and formation of n-octane and 2,2,3,3-tetramethylbutane, J. Chem. Thermodyn., 1972, 4, 709-714. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Prosen and Rossini, 1944
Prosen, E.J.; Rossini, F.D., Heats of combustion of eight normal paraffin hydrocarbons in the liquid state, J. Res. NBS, 1944, 33, 255-272. [all data]

Scott D.W., 1974
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Messerly J.F., 1967
Messerly J.F., Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane. Revised thermodynamic functions for the n-alkanes, C5-C18, J. Chem. Eng. Data, 1967, 12, 338-346. [all data]

Hossenlopp I.A., 1981
Hossenlopp I.A., Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons, J. Chem. Thermodyn., 1981, 13, 415-421. [all data]

Barrow G.M., 1951
Barrow G.M., Experimental vapor heat capacities and heats of vaporization of seven octanes, J. Am. Chem. Soc., 1951, 73, 1824-1826. [all data]

Scott D.W., 1974, 2
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Pitzer K.S., 1946
Pitzer K.S., The entropies and related properties of branched paraffin hydrocarbons, Chem. Rev., 1946, 39, 435-447. [all data]

Finke, Gross, et al., 1954
Finke, H.L.; Gross, M.E.; Waddington, G.; Huffman, H.M., Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane, J. Am. Chem. Soc., 1954, 76, 333-341. [all data]

Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M., Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons, J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]

Parks, Huffman, et al., 1930
Parks, G.S.; Huffman, H.M.; Thomas, S.B., Thermal data on organic compounds. VI. The heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1032-1041. [all data]

Czarnota, 1993
Czarnota, I., Heat capacity of octane at high pressures, J. Chem. Thermodynam., 1993, 25, 355-359. [all data]

Banipal, Garg, et al., 1991
Banipal, T.S.; Garg, S.K.; Ahluwalia, J.C., Heat capacities and densities of liquid n-octane, n-nonane, n-decane, and n-hexadecane at temperatures from 318.15 to 373.15 K and at pressures up to 10 MPa, J. Chem. Thermodynam., 1991, 23, 923-931. [all data]

Trejo, Costas, et al., 1991
Trejo, L.M.; Costas, M.; Patterson, D., Excess heat capacity of organic mixtures, Internat. DATA Series, Selected Data Mixt., 1991, Ser. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Perez-Casas, Aicart, et al., 1988
Perez-Casas, S.; Aicart, E.; Trojo, L.M.; Costas, M., Excess heat capacity. Chlorobenzene-2,2,4,4,6,8,8-heptamethylnonane, Int. Data Ser., Sel. Data Mixtures, 1988, (2)A, 123. [all data]

Benson and D'Arcy, 1986
Benson, G.C.; D'Arcy, P.J., Heat capacities of binary mixtures of n-octane with each of the hexane isomers at 298.15 K, Can. J. Chem., 1986, 64, 2139-2141. [all data]

Tardajos, Aicart, et al., 1986
Tardajos, G.; Aicart, E.; Costas, M.; Patterson, D., Liquid structure and second-order mixing functions for benzene, toluene, and p-xylene with n-alkanes, J. Chem. Soc., Faraday Trans., 1986, 1 82, 2977-2987. [all data]

Lainez, Grolier, et al., 1985
Lainez, A.; Grolier, J.-P.E.; Wilhelm, E., Excess molar heat capacity and excess molar volume of 1,6-dichlorohexane + n-octane, Thermochim. Acta, 1985, 91, 243-248. [all data]

Lainez, Rodrigo, et al., 1985
Lainez, A.; Rodrigo, M.; Roux, A.H.; Grolier, J.-P.E.; Wilhelm, E., Relations between structure and thermodynamic properties. Heat capacities of polar substances (nitrobenzene and benzonitrile) in alkane solutions, Calorim. Anal. Therm., 1985, 16, 153-158. [all data]

Grigor'ev and Andolenko, 1984
Grigor'ev, B.A.; Andolenko, R.A., Investigation of the isobaric heat capacity of n-paraffinic hydrocarbons at atmospheric pressure, Izv. Vyssh. Ucheb. Zaved., Neft i Gaz, 1984, (2), 60-62. [all data]

Roux, Grolier, et al., 1984
Roux, A.H.; Grolier, J.-P.E.; Inglese, A.; Wilhelm, E., Excess molar enthalpies, excess molar heat capacities and excess molar volumes of (fluorobenzene + an n-alkane), Ber. Bunsenges. Phys. Chem., 1984, 88, 986-992. [all data]

Zaripov, 1982
Zaripov, Z.I., Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000 a.e.m., 1982, Teplomassoobmen Teplofiz. [all data]

Grolier, Inglese, et al., 1981
Grolier, J.P.E.; Inglese, A.; Roux, A.H.; Wilhelm, E., Thermodynamics of (1-chloronaphthalene + n-alkane): excess enthalpies, excess volumes and excess heat capacities, Ber. Bunsenges. Phys. Chem., 1981, 85, 768-772. [all data]

Shakirov and Lyubarskii, 1980
Shakirov, R.F.; Lyubarskii, M.V., Low-temperature heat capacity and thermodynamic functions of methyl trichlorothioacrylate, SPSTL Deposited Publication 3 KhP-D80, 1980, 19p. [all data]

Grigor'ev, Rastorguev, et al., 1975
Grigor'ev, B.A.; Rastorguev, Yu.L.; Yanin, G.S., Experimental determination of the isobaric specific heat of n-alkanes, Iz. Vyssh. Uchebn. Zaved. Neft Gaz 18, 1975, No.10, 63-66. [all data]

Connolly, Sage, et al., 1951
Connolly, T.J.; Sage, B.H.; Lacey, W.N., Isobaric heat capacities at bubble point. n-Hexane, methylcyclopentane, and n-octane, Ind. Eng. Chem., 1951, 43, 946-950. [all data]

Osborne and Ginnings, 1947
Osborne, N.S.; Ginnings, D.C., Measurements of heat of vaporization and heat capacity of a number of hydrocarbons, J. Res. NBS, 1947, 39, 453-477. [all data]

Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C., Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes, J. Chem. Eng. Data, 1995, 40, 531-546. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ewing and Ochoa, 2003
Ewing, M.B.; Ochoa, J.C. Sanchez, The vapour pressures of n-octane determined using comparative ebulliometry, Fluid Phase Equilibria, 2003, 210, 2, 277-285, https://doi.org/10.1016/S0378-3812(03)00174-2 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Paul, Krug, et al., 1986
Paul, Hanns-Ingolf; Krug, Joseph; Knapp, Helmut, Measurements of VLE, hE and vE for binary mixtures of n-alkanes with n-alkylbenzenes, Thermochimica Acta, 1986, 108, 9-27, https://doi.org/10.1016/0040-6031(86)85073-0 . [all data]

Michou-Saucet, Jose, et al., 1984
Michou-Saucet, Marie-Annie; Jose, Jacques; Michou-Saucet, Christian; Merlin, J.C., Pressions de vapeur et enthalpies libres d'exces de systemes binaires: Hexamethylphosphorotriamide (HMPT) + n-hexane; n-heptane; n-octane: A 298,15 K; 303,15 K; 313,15 K; 323,15 K; 333,15 K, Thermochimica Acta, 1984, 75, 1-2, 85-106, https://doi.org/10.1016/0040-6031(84)85009-1 . [all data]

Majer, Svoboda, et al., 1979
Majer, Vladimír; Svoboda, Václav; Hála, Slavoj; Pick, Jirí, Temperature dependence of heats of vaporization of saturated hydrocarbons C5-C8; Experimental data and an estimation method, Collect. Czech. Chem. Commun., 1979, 44, 3, 637-651, https://doi.org/10.1135/cccc19790637 . [all data]

Carruth and Kobayashi, 1973
Carruth, Grant F.; Kobayashi, Riki, Vapor pressure of normal paraffins ethane through n-decane from their triple points to about 10 mm mercury, J. Chem. Eng. Data, 1973, 18, 2, 115-126, https://doi.org/10.1021/je60057a009 . [all data]

McKay and Sage, 1960
McKay, R.A.; Sage, B.H., Latent Heat of Vaporization for n-Octane., J. Chem. Eng. Data, 1960, 5, 1, 21-24, https://doi.org/10.1021/je60005a005 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Mondieig, Rajabalee, et al., 2004
Mondieig, D.; Rajabalee, F.; Metivaud, V.; Oonk, H.A.J.; Cuevas-Diarte, M.A., n -Alkane Binary Molecular Alloys, Chem. Mater., 2004, 16, 5, 786-798, https://doi.org/10.1021/cm031169p . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Rogers, Dejroongruang, et al., 1992
Rogers, D.W.; Dejroongruang, K.; Samuel, S.D.; Fang, W.; Zhao, Y., Enthalpies of hydrogenation of the octenes and the methylheptenes, J. Chem. Thermodyn., 1992, 24, 561-565. [all data]

Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A., Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids, J. Phys. Chem., 1975, 79, 574-577. [all data]

Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J., Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins, J. Am. Chem. Soc., 1973, 95, 790-792. [all data]

Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L., Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation, J. Am. Chem. Soc., 1979, 101, 671-676. [all data]

Sicher, Svoboda, et al., 1966
Sicher, J.; Svoboda, M.; Zavada, J.; Turner, R.B.; Goebel, P., Sterochemical studies - XXXVI. An approach to conformational analysis of medium ring compounds. Unsaturated ten-membered ring derivates, Tetrahedron, 1966, 22, 659-671. [all data]

Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R., Heats of hydrogenation by a simple and rapid flow calorimetric method, Appl. Catal., 1984, 9, 219-223. [all data]

Prosen and Rossini, 1945, 2
Prosen, E.J.; Rossini, F.D., Heats of isomerization of the 18 octanes, J. Res. NBS, 1945, 34, 163-174. [all data]

Flitcroft, Skinner, et al., 1957
Flitcroft, T.; Skinner, H.A.; Whiting, M.C., Heats of hydrogenation Part 1.-Dodeca-3:9 and -5:7 Diynes, Trans. Faraday Soc., 1957, 53, 784-790. [all data]

Flitcroft and Skinner, 1958
Flitcroft, T.L.; Skinner, H.A., Heats of hydrogenation Part 2.-Acetylene derivatives, Trans. Faraday Soc., 1958, 54, 47-53. [all data]

Roth, Scholz, et al., 1982
Roth, W.R.; Scholz, B.P.; Breuckmann, R.; Jelich, K.; Lennartz, H.W., Thermolysis of 1,2,6,7-octatetraene, Chem. Ber., 1982, 115, 1934-1946. [all data]

Eliseev, 1986
Eliseev, N.A., Thermodynamic calculation of the equilibrium composition of isomeric octenes in dehydrogenation of n-octane, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1986, 29, 26-29. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References