Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Pyridine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Deltafgas33.50kcal/molCcbHubbard, Frow, et al., 1961ALS
Deltafgas33.61 ± 0.36kcal/molCmAndon, Cox, et al., 1957ALS
Deltafgas33.63 ± 0.36kcal/molCcbCox, Challoner, et al., 1954ALS
Deltafgas26.31kcal/molN/AConstam and White, 1903Value computed using «DELTA»fHliquid° value of 69.9 kj/mol from Constam and White, 1903 and «DELTA»vapH° value of 40.2 kj/mol from Hubbard, Frow, et al., 1961.; DRB

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Deltafliquid23.89 ± 0.12kcal/molCcbHubbard, Frow, et al., 1961ALS
Deltafliquid23.95 ± 0.36kcal/molCcbCox, Challoner, et al., 1954ALS
Deltafliquid16.7kcal/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
Deltacliquid-651.3kcal/molCcbStrepikheev, Baranov, et al., 1962ALS
Deltacliquid-664.95 ± 0.10kcal/molCcbHubbard, Frow, et al., 1961ALS
Deltacliquid-665.00 ± 0.36kcal/molCcbCox, Challoner, et al., 1954ALS
Deltacliquid-659.2kcal/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
liquid42.519cal/mol*KN/AMcCullough, Douslin, et al., 1957DH
liquid42.81cal/mol*KN/AParks, Todd, et al., 1936Extrapolation below 90 K, 50.04 J/mol*K.; DH
liquid50.289cal/mol*KN/APearce and Bakke, 1936Extrapolation below 90 K, 89.33 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
46.22293.Rastorguev and Ganiev, 1967T = 293 to 353 K.; DH
31.8298.15Hubbard, Frow, et al., 1961DH
35.11332.Swietoslawski and Zielenkiewicz, 1958Mean value 22 to 96°C.; DH
31.721298.15McCullough, Douslin, et al., 1957T = 10 to 350 K.; DH
32.249298.1Parks, Todd, et al., 1936T = 90 to 300 K.; DH
31.859298.1Pearce and Bakke, 1936T = 90 to 298 K. Value is unsmoothed experimental datum.; DH
30.90289.Radulescu and Jula, 1934DH
32.349273.4Swietoslawski, Tybicka, et al., 1931DH
32.41290.Swietoslawski, Tybicka, et al., 1931, 2DH
30.911294.Mathews, Krause, et al., 1917DH
31.19283.Bramley, 1916Mean value, 0 to 20°C.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C5H4N- + Hydrogen cation = Pyridine

By formula: C5H4N- + H+ = C5H5N

Quantity Value Units Method Reference Comment
Deltar389.9 ± 2.0kcal/molIMRESchafman and Wenthold, 2007gas phase; B
Deltar391.0 ± 2.5kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Quantity Value Units Method Reference Comment
Deltar382.7 ± 2.0kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Deltar384.0 ± 3.0kcal/molIMRBDePuy, Kass, et al., 1988gas phase; Comparable to water in acidity; B
Deltar<376.3 ± 2.0kcal/molIMRBBruins, Ferrer-Correia, et al., 1978gas phase; O- deprotonates; B

C5H6N+ + Pyridine = (C5H6N+ bullet Pyridine)

By formula: C5H6N+ + C5H5N = (C5H6N+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar25.2kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar24.6kcal/molPHPMSMeot-Ner M. and Sieck, 1983gas phase; M
Deltar26.3kcal/molHPMSHolland and Castleman, 1982gas phase; M
Deltar23.7kcal/molPHPMSMeot-Ner (Mautner), 1979gas phase; M
Deltar23.7kcal/molPHPMSMeot-Ner (Mautner), 1979gas phase; M
Quantity Value Units Method Reference Comment
Deltar29.6cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar28.2cal/mol*KPHPMSMeot-Ner M. and Sieck, 1983gas phase; M
Deltar32.1cal/mol*KHPMSHolland and Castleman, 1982gas phase; M
Deltar28.cal/mol*KPHPMSMeot-Ner (Mautner), 1979gas phase; M
Deltar28.cal/mol*KPHPMSMeot-Ner (Mautner), 1979gas phase; M

Pyridine + 3Hydrogen = Piperidine

By formula: C5H5N + 3H2 = C5H11N

Quantity Value Units Method Reference Comment
Deltar-46.31 ± 0.18kcal/molEqkHales and Herington, 1957gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -48.32 ± 0.18 kcal/mol; At 400-550 K; ALS
Deltar-46.12 ± 0.50kcal/molEqkBurrows and King, 1935liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -45.00 kcal/mol; At 423-443 K; ALS

Chlorine anion + Pyridine = (Chlorine anion bullet Pyridine)

By formula: Cl- + C5H5N = (Cl- bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar12.7 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar19.7cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Deltar6.8 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(C5H6N+ bullet 2Pyridine) + Pyridine = (C5H6N+ bullet 3Pyridine)

By formula: (C5H6N+ bullet 2C5H5N) + C5H5N = (C5H6N+ bullet 3C5H5N)

Quantity Value Units Method Reference Comment
Deltar13.6kcal/molHPMSHolland and Castleman, 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Deltar37.9cal/mol*KHPMSHolland and Castleman, 1982gas phase; Entropy change is questionable; M

Lithium ion (1+) + Pyridine = (Lithium ion (1+) bullet Pyridine)

By formula: Li+ + C5H5N = (Li+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar43.2 ± 3.5kcal/molCIDTAmunugama and Rodgers, 2000RCD
Deltar44.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Potassium ion (1+) + Pyridine = (Potassium ion (1+) bullet Pyridine)

By formula: K+ + C5H5N = (K+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar21.6 ± 0.9kcal/molCIDTAmunugama and Rodgers, 2000RCD
Deltar20.7kcal/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Deltar18.6cal/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(Silver ion (1+) bullet 2Pyridine) + Pyridine = (Silver ion (1+) bullet 3Pyridine)

By formula: (Ag+ bullet 2C5H5N) + C5H5N = (Ag+ bullet 3C5H5N)

Quantity Value Units Method Reference Comment
Deltar16.7kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Deltar28.0cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) bullet 3Pyridine) + Pyridine = (Silver ion (1+) bullet 4Pyridine)

By formula: (Ag+ bullet 3C5H5N) + C5H5N = (Ag+ bullet 4C5H5N)

Quantity Value Units Method Reference Comment
Deltar17.9kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Deltar40.3cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Chlorine anion bullet Pyridine) + Pyridine = (Chlorine anion bullet 2Pyridine)

By formula: (Cl- bullet C5H5N) + C5H5N = (Cl- bullet 2C5H5N)

Quantity Value Units Method Reference Comment
Deltar11.7kcal/molPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Deltar22.6cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M

(C5H6N+ bullet Pyridine) + Pyridine = (C5H6N+ bullet 2Pyridine)

By formula: (C5H6N+ bullet C5H5N) + C5H5N = (C5H6N+ bullet 2C5H5N)

Quantity Value Units Method Reference Comment
Deltar12.6kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Deltar29.7cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

H2O3- + Pyridine + Water = C5H7NO3-

By formula: H2O3- + C5H5N + H2O = C5H7NO3-

Quantity Value Units Method Reference Comment
Deltar32.7 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Oxygen anion + Pyridine = C5H5NO2-

By formula: O2- + C5H5N = C5H5NO2-

Quantity Value Units Method Reference Comment
Deltar21.7 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Pyridine = C5H5N2O-

By formula: NO- + C5H5N = C5H5N2O-

Quantity Value Units Method Reference Comment
Deltar13.6 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

3Pyridine, 1-oxide + potassium chloride = 3Pyridine + KClO3

By formula: 3C5H5NO + ClK = 3C5H5N + KClO3

Quantity Value Units Method Reference Comment
Deltar75.2 ± 2.4kcal/molCmShaofeng and Pilcher, 1988solid phase; ALS

3Pyridine, 1-oxide + potassium bromide = 3Pyridine + KBrO3

By formula: 3C5H5NO + BrK = 3C5H5N + KBrO3

Quantity Value Units Method Reference Comment
Deltar75.0 ± 2.3kcal/molCmShaofeng and Pilcher, 1988solid phase; ALS

Iron ion (1+) + Pyridine = (Iron ion (1+) bullet Pyridine)

By formula: Fe+ + C5H5N = (Fe+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar53.4 ± 2.2kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Chromium ion (1+) + Pyridine = (Chromium ion (1+) bullet Pyridine)

By formula: Cr+ + C5H5N = (Cr+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar47.1 ± 2.8kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Titanium ion (1+) + Pyridine = (Titanium ion (1+) bullet Pyridine)

By formula: Ti+ + C5H5N = (Ti+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar51.9 ± 2.3kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Manganese ion (1+) + Pyridine = (Manganese ion (1+) bullet Pyridine)

By formula: Mn+ + C5H5N = (Mn+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar43.4 ± 2.1kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Scandium ion (1+) + Pyridine = (Scandium ion (1+) bullet Pyridine)

By formula: Sc+ + C5H5N = (Sc+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar55.3 ± 2.5kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Magnesium ion (1+) + Pyridine = (Magnesium ion (1+) bullet Pyridine)

By formula: Mg+ + C5H5N = (Mg+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar47.8 ± 1.6kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Vanadium ion (1+) + Pyridine = (Vanadium ion (1+) bullet Pyridine)

By formula: V+ + C5H5N = (V+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar52.2 ± 3.2kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Nickel ion (1+) + Pyridine = (Nickel ion (1+) bullet Pyridine)

By formula: Ni+ + C5H5N = (Ni+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar60.9 ± 3.7kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Aluminum ion (1+) + Pyridine = (Aluminum ion (1+) bullet Pyridine)

By formula: Al+ + C5H5N = (Al+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar45.5 ± 2.5kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Zinc ion (1+) + Pyridine = (Zinc ion (1+) bullet Pyridine)

By formula: Zn+ + C5H5N = (Zn+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar59.0 ± 1.7kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Cobalt ion (1+) + Pyridine = (Cobalt ion (1+) bullet Pyridine)

By formula: Co+ + C5H5N = (Co+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar59.0 ± 3.0kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Copper ion (1+) + Pyridine = (Copper ion (1+) bullet Pyridine)

By formula: Cu+ + C5H5N = (Cu+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar58.7 ± 2.5kcal/molCIDTRodgers, Stanley, et al., 2000RCD

Sodium ion (1+) + Pyridine = (Sodium ion (1+) bullet Pyridine)

By formula: Na+ + C5H5N = (Na+ bullet C5H5N)

Quantity Value Units Method Reference Comment
Deltar30.3 ± 0.7kcal/molCIDTAmunugama and Rodgers, 2000RCD

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hubbard, Frow, et al., 1961
Hubbard, W.N.; Frow, F.R.; Waddington, G., The heats of combustion and formation of pyridine and hippuric acid, J. Phys. Chem., 1961, 65, 1326-1328. [all data]

Andon, Cox, et al., 1957
Andon, R.J.L.; Cox, J.D.; Herington, E.F.G.; Martin, J.F., The second virial coefficients of pyridine and benzene, and certain of their methyl homologues, Trans. Faraday Soc., 1957, 53, 1074. [all data]

Cox, Challoner, et al., 1954
Cox, J.D.; Challoner, A.R.; Meetham, A.R., The heats of combustion of pyridine and certain of its derivatives, J. Chem. Soc., 1954, 265-271. [all data]

Constam and White, 1903
Constam, E.J.; White, J., Physico-chemical investigations in the pyridine series, Am. Chem. J., 1903, 29, 1-49. [all data]

Strepikheev, Baranov, et al., 1962
Strepikheev, Yu.A.; Baranov, Yu.I.; Burmistrova, O.A., Determination of the heats of combustion and the heat capacities of several mono- and di-isocyanates, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1962, 5, 387-390. [all data]

McCullough, Douslin, et al., 1957
McCullough, J.P.; Douslin, D.R.; Messerly, J.F.; Hossenlopp, I.A.; Kincheloe, T.C.; Waddington, G., Pyridine: experimental and calculated chemical thermodynamic properties between 0 and 1500 K., a revised vibrational assignment, J. Am. Chem. Soc., 1957, 79, 4289-4295. [all data]

Parks, Todd, et al., 1936
Parks, G.S.; Todd, S.S.; Moore, W.A., Thermal data on organic compounds. XVI. Some heat capacity, entropy and free energy data for typical benzene derivatives and heterocyclic compounds, J. Am. Chem. Soc., 1936, 58, 398-401. [all data]

Pearce and Bakke, 1936
Pearce, J.N.; Bakke, H.M., The heat capacity and the free energy of formation of pyridine, Proc. Iowa Acad. Sci., 1936, 43, 171-174. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat of some ternary azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]

Radulescu and Jula, 1934
Radulescu, D.; Jula, O., Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen, Z. Phys. Chem., 1934, B26, 390-393. [all data]

Swietoslawski, Tybicka, et al., 1931
Swietoslawski, W.; Tybicka, S.; Solodkowska, W., Sur un microcalorimetre adiabatique, adapte aux mesures de la chaleur specifique de substances solides et liquides, Bull. Int. Acad. Pol. Sci. Lett. Cl. Sci. Math Nat. Ser A, 1931, 1931, 322-335. [all data]

Swietoslawski, Tybicka, et al., 1931, 2
Swietoslawski, W.; Tybicka, S.; Solodkowska, W., Sur un microcalorimetre adiabatique, adapte aux mesures de la chaleur specifique de substances solides et liquides, Rocz. Chem., 1931, 11, 65-77. [all data]

Mathews, Krause, et al., 1917
Mathews, J.H.; Krause, E.L.; Bohnson, B.L., a contribution to the thermal chemistry of pyridine, J. Am. Chem. Soc., 1917, 39, 398-413. [all data]

Bramley, 1916
Bramley, A., The study of binary mixtures. Part IV. Heats of reaction and specific heats, J. Chem. Soc. (London), 1916, 109, 496-515. [all data]

Schafman and Wenthold, 2007
Schafman, B.S.; Wenthold, P.G., Regioselectivity of pyridine deprotonation in the gas phase, J. Org. Chem., 2007, 72, 5, 1645-1651, https://doi.org/10.1021/jo062117x . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]

Bruins, Ferrer-Correia, et al., 1978
Bruins, A.P.; Ferrer-Correia, A.J.; Harrison, A.G.; Jennings, K.R.; Mithcum, R.K., Negative ion chemical ionization mass spectrometry of some aromatic compounds using O-. as the reagent ion, Adv. Mass Spectrom., 1978, 7, 355. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Meot-Ner M. and Sieck, 1983
Meot-Ner M.; Sieck, L.W., The Ionic Hydrogen Bond. 1. Sterically Hindered Bonds. Solvation and Clustering of Sterically Hindered Amines and Pyridines, J. Am. Chem. Soc., 1983, 105, 10, 2956, https://doi.org/10.1021/ja00348a005 . [all data]

Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W., The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes, J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497 . [all data]

Meot-Ner (Mautner), 1979
Meot-Ner (Mautner), M., Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. II. Intrinsic Basicities and Hydrogen Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases, J. Am. Chem. Soc., 1979, 101, 9, 2396, https://doi.org/10.1021/ja00503a027 . [all data]

Hales and Herington, 1957
Hales, J.L.; Herington, E.F.G., Equilibrium between pyridine and piperidine, Trans. Faraday Soc., 1957, 53, 616-622. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Burrows and King, 1935
Burrows, G.H.; King, L.A., Jr., The free energy change that accompanies hydrogenation of pyridine to piperidine, J. Am. Chem. Soc., 1935, 57, 1789-1791. [all data]

Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S., Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I), Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4 . [all data]

Amunugama and Rodgers, 2000
Amunugama, R.; Rodgers, M.T., Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation and Ab Initio Theory, Int. J. Mass Spectrom., 2000, 195/196, 439, https://doi.org/10.1016/S1387-3806(99)00145-1 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Shaofeng and Pilcher, 1988
Shaofeng, L.; Pilcher, G., Enthalpy of formation of pyridine-N-oxide: the dissociation enthalpy of the (N-O) bond, J. Chem. Thermodyn., 1988, 20, 463-465. [all data]

Rodgers, Stanley, et al., 2000
Rodgers, M.T.; Stanley, J.R.; Amunugama, R., Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory, J. Am. Chem. Soc., 2000, 122, 44, 10969, https://doi.org/10.1021/ja0027923 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References