Cyclohexane
- Formula: C6H12
- Molecular weight: 84.1595
- IUPAC Standard InChIKey: XDTMQSROBMDMFD-UHFFFAOYSA-N
- CAS Registry Number: 110-82-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Benzene, hexahydro-; Hexahydrobenzene; Hexamethylene; Hexanaphthene; Cicloesano; Cykloheksan; Rcra waste number U056; UN 1145; NSC 406835
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -124.6 | kJ/mol | N/A | Spitzer and Huffman, 1947 | Value computed using ΔfHliquid° value of -157.7±1.8 kj/mol from Spitzer and Huffman, 1947 and ΔvapH° value of 33.1 kj/mol from Prosen, Johnson, et al., 1946.; DRB |
ΔfH°gas | -123.1 ± 0.79 | kJ/mol | Ccb | Prosen, Johnson, et al., 1946 | ALS |
ΔfH°gas | -123.3 | kJ/mol | N/A | Moore, Renquist, et al., 1940 | Value computed using ΔfHliquid° value of -156.4±1.3 kj/mol from Moore, Renquist, et al., 1940 and ΔvapH° value of 33.1 kj/mol from Prosen, Johnson, et al., 1946.; DRB |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 298.19 | J/mol*K | N/A | Beckett C.W., 1947 | Close value of S(298.15 K)=298.78(0.75) J/mol*K was obtained by [43ASTSZA] from calorimetric data.; GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
34.07 | 50. | Dorofeeva O.V., 1986 | There is an appreciable difference (up to 3.0-4.5 J/mol*K) between selected values of S(T) and Cp(T) and earlier statistically calculated values [ Brickwedde F.G., 1946, Beckett C.W., 1947, Kilpatrick J.E., 1947, Lippincott E.R., 1966] at high temperatures. It is due to using the most reliable molecular constants in [ Dorofeeva O.V., 1986].; GT |
42.59 | 100. | ||
54.80 | 150. | ||
69.05 | 200. | ||
95.20 | 273.15 | ||
105.3 ± 2.0 | 298.15 | ||
106.11 | 300. | ||
148.64 | 400. | ||
188.68 | 500. | ||
223.38 | 600. | ||
252.62 | 700. | ||
277.05 | 800. | ||
297.42 | 900. | ||
314.42 | 1000. | ||
328.66 | 1100. | ||
340.65 | 1200. | ||
350.79 | 1300. | ||
359.44 | 1400. | ||
366.85 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
138.07 | 370. | Spitzer R., 1946 | Please also see Montgomery J.B., 1942.; GT |
143.1 ± 1.3 | 384. | ||
146.44 | 390. | ||
153.97 | 410. | ||
161.8 ± 1.7 | 428. | ||
174.5 ± 1.7 | 460. | ||
189.5 ± 2.1 | 495. | ||
196.7 ± 2.1 | 521. | ||
206.3 ± 2.1 | 544. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 353.9 ± 0.2 | K | AVG | N/A | Average of 93 out of 116 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 279.6 ± 0.3 | K | AVG | N/A | Average of 38 out of 47 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 279.7 ± 0.4 | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 554. ± 1. | K | AVG | N/A | Average of 18 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 40.7 ± 0.5 | bar | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.308 | l/mol | N/A | Daubert, 1996 | |
Vc | 0.309 | l/mol | N/A | Young, 1972 | Uncertainty assigned by TRC = 0.003 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.24 ± 0.03 | mol/l | N/A | Daubert, 1996 | |
ρc | 3.26 | mol/l | N/A | Teja and Anselme, 1990 | Uncertainty assigned by TRC = 0.07 mol/l; TRC |
ρc | 3.230 | mol/l | N/A | Simon, 1957 | Uncertainty assigned by TRC = 0.04 mol/l; TRC |
ρc | 3.250 | mol/l | N/A | Young, 1910 | Uncertainty assigned by TRC = 0.02 mol/l; TRC |
ρc | 3.247 | mol/l | N/A | Young and Fortey, 1899 | Uncertainty assigned by TRC = 0.06 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 33.1 ± 0.4 | kJ/mol | AVG | N/A | Average of 19 out of 21 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
29.97 | 353.9 | N/A | Majer and Svoboda, 1985 | |
33.334 | 298.15 | N/A | Aston, Szasa, et al., 1943 | P = 13.18 kPa; DH |
33.1 | 315. | EB | Gierycz, Kosowski, et al., 2009 | Based on data from 296. to 353. K.; AC |
32.7 | 315. | N/A | Lubomska, Banas, et al., 2002 | Based on data from 300. to 345. K.; AC |
31.9 | 324. | EB | Diogo, Santos, et al., 1995 | Based on data from 313. to 336. K.; AC |
32.2 | 375. | N/A | Lee and Holder, 1993 | Based on data from 360. to 470. K.; AC |
32.3 | 314. | C | Dong, Lin, et al., 1988 | AC |
31.1 | 332. | C | Dong, Lin, et al., 1988 | AC |
30.3 | 345. | C | Dong, Lin, et al., 1988 | AC |
30.0 | 355. | C | Dong, Lin, et al., 1988 | AC |
30.9 | 368. | A | Stephenson and Malanowski, 1987 | Based on data from 353. to 414. K.; AC |
29.6 | 427. | A | Stephenson and Malanowski, 1987 | Based on data from 412. to 491. K.; AC |
29.6 | 504. | A | Stephenson and Malanowski, 1987 | Based on data from 489. to 553. K.; AC |
32.9 | 308. | A,MM | Stephenson and Malanowski, 1987 | Based on data from 293. to 355. K. See also Willingham, Taylor, et al., 1945.; AC |
32.3 ± 0.1 | 313. | C | Majer, Svoboda, et al., 1979 | AC |
31.2 ± 0.1 | 333. | C | Majer, Svoboda, et al., 1979 | AC |
31.0 ± 0.1 | 338. | C | Majer, Svoboda, et al., 1979 | AC |
30.4 ± 0.1 | 348. | C | Majer, Svoboda, et al., 1979 | AC |
30.1 ± 0.1 | 353. | C | Majer, Svoboda, et al., 1979 | AC |
32.2 ± 0.1 | 313. | C | Svoboda, Veselý, et al., 1973 | AC |
31.9 ± 0.1 | 323. | C | Svoboda, Veselý, et al., 1973 | AC |
31.1 ± 0.1 | 333. | C | Svoboda, Veselý, et al., 1973 | AC |
30.6 ± 0.1 | 343. | C | Svoboda, Veselý, et al., 1973 | AC |
30.1 ± 0.1 | 354. | C | Svoboda, Veselý, et al., 1973 | AC |
32.5 | 318. | N/A | Gaw and Swinton, 1968 | Based on data from 303. to 343. K.; AC |
32.9 | 313. | N/A | Cruickshank and Cutler, 1967 | Based on data from 298. to 348. K.; AC |
32.8 | 331. | N/A | Marinichev and Susarev, 1965 | Based on data from 316. to 354. K.; AC |
31.4 ± 0.1 | 324. | C | McCullough, Person, et al., 1951 | AC |
30.4 ± 0.1 | 346. | C | McCullough, Person, et al., 1951 | AC |
30.1 | 354. | N/A | Spitzer and Pitzer, 1946 | AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 292. to 422. |
---|---|
A (kJ/mol) | 43.32 |
α | -0.1437 |
β | 0.4512 |
Tc (K) | 553.4 |
Reference | Majer and Svoboda, 1985 |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
111.80 | 298.15 | Aston, Szasa, et al., 1943 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
323. to 523. | 4.13983 | 1316.554 | -35.581 | Kerns, Anthony, et al., 1974 | Coefficents calculated by NIST from author's data. |
303. to 343. | 3.9920 | 1216.93 | -48.621 | Gaw and Swinton, 1968, 2 | Coefficents calculated by NIST from author's data. |
315.70 to 353.90 | 3.17125 | 780.637 | -107.29 | Marinichev and Susarev, 1965, 2 | Coefficents calculated by NIST from author's data. |
293.06 to 354.73 | 3.96988 | 1203.526 | -50.287 | Williamham, Taylor, et al., 1945 |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
27.6 | 265. | A | Stephenson and Malanowski, 1987 | Based on data from 223. to 280. K.; AC |
46.6 | 186. | B | Bondi, 1963 | AC |
37.2 | 273. | N/A | Jones, 1960 | Based on data from 268. to 278. K.; AC |
37.7 | 248. | A | Stull, 1947 | Based on data from 228. to 268. K.; AC |
36.5 | 274. | A | Rotinjanz and Nagornow, 1934 | Based on data from 269. to 279. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.68 | 279.8 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
36.2 | 186.1 | Domalski and Hearing, 1996 | CAL |
9.57 | 279.8 |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
6.686 | 186.09 | crystaline, II | crystaline, I | Aston, Szasa, et al., 1943 | DH |
2.628 | 279.84 | crystaline, I | liquid | Aston, Szasa, et al., 1943 | DH |
6.7396 | 186.1 | crystaline, II | crystaline, I | Ruehrwein and Huffman, 1943 | DH |
2.6769 | 279.82 | crystaline, I | liquid | Ruehrwein and Huffman, 1943 | DH |
6.820 | 186.4 | crystaline, II | crystaline, I | Ziegler and Andrews, 1942 | DH |
2.728 | 279.4 | crystaline, I | liquid | Ziegler and Andrews, 1942 | DH |
6.234 | 185.9 | crystaline, II | crystaline, I | Parks, Huffman, et al., 1930 | DH |
2.423 | 279.3 | crystaline, I | liquid | Parks, Huffman, et al., 1930 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
35.93 | 186.09 | crystaline, II | crystaline, I | Aston, Szasa, et al., 1943 | DH |
9.39 | 279.84 | crystaline, I | liquid | Aston, Szasa, et al., 1943 | DH |
36.21 | 186.1 | crystaline, II | crystaline, I | Ruehrwein and Huffman, 1943 | DH |
9.57 | 279.82 | crystaline, I | liquid | Ruehrwein and Huffman, 1943 | DH |
36.59 | 186.4 | crystaline, II | crystaline, I | Ziegler and Andrews, 1942 | DH |
9.76 | 279.4 | crystaline, I | liquid | Ziegler and Andrews, 1942 | DH |
33.53 | 185.9 | crystaline, II | crystaline, I | Parks, Huffman, et al., 1930 | DH |
8.68 | 279.3 | crystaline, I | liquid | Parks, Huffman, et al., 1930 | DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.0051 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.0055 | 3200. | X | N/A | |
0.0062 | 710. | X | N/A | |
0.0056 | L | N/A | ||
0.0051 | V | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C6H12+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.88 ± 0.03 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 686.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 666.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.80 ± 0.05 | EI | Holmes and Lossing, 1991 | LL |
10.0 ± 0.03 | EI | Arimura and Yoshikawa, 1984 | LBLHLM |
9.82 | EQ | Sieck and Mautner(Meot-Ner), 1982 | LBLHLM |
9.88 ± 0.10 | EQ | Lias, 1982 | LBLHLM |
9.88 | PE | Kovac and Klasinc, 1978 | LLK |
9.88 ± 0.02 | PE | Bieri, Burger, et al., 1977 | LLK |
9.88 | EI | Lossing and Traeger, 1975 | LLK |
9.89 ± 0.01 | PE | Rang, Paldoia, et al., 1974 | LLK |
9.83 ± 0.05 | EI | Puttemans, 1974 | LLK |
9.84 | PE | Puttemans, 1974 | LLK |
9.88 ± 0.01 | PI | Sergeev, Akopyan, et al., 1973 | LLK |
9.87 | PE | Ikuta, Yoshihara, et al., 1973 | LLK |
9.88 ± 0.01 | S | Raymonda, 1972 | LLK |
9.89 | PE | Demeo and Yencha, 1970 | RDSH |
9.81 | PE | Dewar and Worley, 1969 | RDSH |
9.79 | PE | Al-Joboury and Turner, 1964 | RDSH |
9.88 ± 0.02 | PI | Watanabe, 1957 | RDSH |
11.0 ± 0.2 | EI | Hustrulid, Kusch, et al., 1938 | RDSH |
10.32 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
10.3 ± 0.1 | PE | Bieri, Burger, et al., 1977 | Vertical value; LLK |
10.3 | PE | Bruckmann and Klessinger, 1973 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C3H5+ | 13.20 ± 0.08 | C3H7 | EI | Rabbih, Selim, et al., 1981 | LLK |
C3H6+ | 12.00 ± 0.07 | C3H6 | EI | Rabbih, Selim, et al., 1981 | LLK |
C3H6+ | 11.23 ± 0.04 | C3H6 | PI | Sergeev, Akopyan, et al., 1973 | LLK |
C3H7+ | 13.50 ± 0.08 | C3H5 | EI | Rabbih, Selim, et al., 1981 | LLK |
C3H7+ | 11.49 ± 0.03 | C3H5 | PI | Sergeev, Akopyan, et al., 1973 | LLK |
C4H7+ | 11.21 ± 0.04 | C2H5 | PI | Sergeev, Akopyan, et al., 1973 | LLK |
C4H8+ | 11.15 ± 0.03 | C2H4 | EI | Rabbih, Selim, et al., 1981 | LLK |
C4H8+ | 11.45 | C2H4 | EI | Puttemans, 1974 | LLK |
C4H8+ | 11.08 ± 0.01 | C2H4 | PI | Sergeev, Akopyan, et al., 1973 | LLK |
C5H9+ | 9.88 | CH3 | EI | Lossing and Traeger, 1975, 2 | LLK |
C5H9+ | ≤11.06 | CH3 | EI | Lossing and Traeger, 1975 | LLK |
C5H9+ | 11.15 | CH3 | EI | Puttemans, 1974 | LLK |
C5H9+ | 11.07 ± 0.04 | CH3 | PI | Sergeev, Akopyan, et al., 1973 | LLK |
C6H11+ | 11.32 ± 0.05 | H | PI | Sergeev, Akopyan, et al., 1973 | LLK |
C6H11+ | 11.66 | H | EI | Pottie, Harrison, et al., 1961 | RDSH |
De-protonation reactions
C6H11- + =
By formula: C6H11- + H+ = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1750. ± 8.4 | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase; B |
ΔrH° | 1702.1 ± 3.8 | kJ/mol | G+TS | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1713. ± 9.2 | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
ΔrG° | >1665.2 | kJ/mol | IMRB | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spitzer and Huffman, 1947
Spitzer, R.; Huffman, H.M.,
The heats of combustion of cyclopentane, cyclohexane, cycloheptane and cyclooctane,
J. Am. Chem. Soc., 1947, 69, 211-213. [all data]
Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D.,
Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons,
J. Res. NBS, 1946, 37, 51-56. [all data]
Moore, Renquist, et al., 1940
Moore, G.E.; Renquist, M.L.; Parks, G.S.,
Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins,
J. Am. Chem. Soc., 1940, 62, 1505-1507. [all data]
Beckett C.W., 1947
Beckett C.W.,
The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane, and seven dimethylcyclohexanes,
J. Am. Chem. Soc., 1947, 69, 2488-2495. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
Thermodynamic properties of twenty-one monocyclic hydrocarbons,
J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]
Brickwedde F.G., 1946
Brickwedde F.G.,
Equilibrium constants of some reactions involved in the production of 1,3-butadiene,
J. Res. Nat. Bur. Stand., 1946, 37, 263-279. [all data]
Kilpatrick J.E., 1947
Kilpatrick J.E.,
Heats, equilibrium constants, and free energies of formation of the alkylcyclopentanes and alkylcyclohexanes,
J. Res. Nat. Bur. Stand., 1947, 39, 523-543. [all data]
Lippincott E.R., 1966
Lippincott E.R.,
Enthalpy, free energy, entropy, and heat capacity of cyclohexane and acetaldehyde,
Bull. Soc. Chim. Belges., 1966, 75, 655-667. [all data]
Spitzer R., 1946
Spitzer R.,
The heat capacity of gaseous cyclopentane, cyclohexane and methylcyclohexane,
J. Am. Chem. Soc., 1946, 68, 2537-2538. [all data]
Montgomery J.B., 1942
Montgomery J.B.,
The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene,
J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]
Daubert, 1996
Daubert, T.E.,
Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes,
J. Chem. Eng. Data, 1996, 41, 365-372. [all data]
Young, 1972
Young, C.L.,
Gas-liquid critical properties of the cycloalkanes and their mixtures,
Aust. J. Chem., 1972, 25, 1625-30. [all data]
Teja and Anselme, 1990
Teja, A.S.; Anselme, M.J.,
The critical properties of thermally stable and unstable fluids. II. 1986 results,
AIChE Symp. Ser., 1990, 86, 279, 122-7. [all data]
Simon, 1957
Simon, M.,
Methods and Apparatus Used at the Bureau of Physicochemical Standards XV. Critical Constants and Straight-Line Diameters of Ten Hydrocarbons,
Bull. Soc. Chim. Belg., 1957, 66, 375-81. [all data]
Young, 1910
Young, S.,
The Internal Heat of Vaporization constants of thirty pure substances,
Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]
Young and Fortey, 1899
Young, S.; Fortey, E.C.,
The Vapour Pressures, Specific Volumes and Critical Constants of Hexamethylene.,
J. Chem. Soc., Trans., 1899, 75, 873. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Aston, Szasa, et al., 1943
Aston, J.G.; Szasa, G.J.; Fink, H.L.,
The heat capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclohexane. The vibrational frequencies of alicyclic ring systems,
J. Am. Chem. Soc., 1943, 65, 1135-1139. [all data]
Gierycz, Kosowski, et al., 2009
Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard,
Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols,
J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z
. [all data]
Lubomska, Banas, et al., 2002
Lubomska, Monika; Banas, Agnieszka; Malanowski, Stanislaw K.,
Vapor-Liquid Equilibrium in Binary Systems Formed by Allyl Alcohol with Benzene and with Cyclohexane,
J. Chem. Eng. Data, 2002, 47, 6, 1466-1471, https://doi.org/10.1021/je025540l
. [all data]
Diogo, Santos, et al., 1995
Diogo, Hermínio P.; Santos, Rui C.; Nunes, Paulo M.; Minas da Piedade, Manuel E.,
Ebulliometric apparatus for the measurement of enthalpies of vaporization,
Thermochimica Acta, 1995, 249, 113-120, https://doi.org/10.1016/0040-6031(95)90678-9
. [all data]
Lee and Holder, 1993
Lee, Chang Ha; Holder, Gerald D.,
Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene,
J. Chem. Eng. Data, 1993, 38, 2, 320-323, https://doi.org/10.1021/je00010a034
. [all data]
Dong, Lin, et al., 1988
Dong, Jin-Quan; Lin, Rui-Sen; Yen, Wen-Hsing,
Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene,
Can. J. Chem., 1988, 66, 4, 783-790, https://doi.org/10.1139/v88-136
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons,
J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009
. [all data]
Majer, Svoboda, et al., 1979
Majer, Vladimír; Svoboda, Václav; Hála, Slavoj; Pick, Jirí,
Temperature dependence of heats of vaporization of saturated hydrocarbons C5-C8; Experimental data and an estimation method,
Collect. Czech. Chem. Commun., 1979, 44, 3, 637-651, https://doi.org/10.1135/cccc19790637
. [all data]
Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J.,
Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature,
Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539
. [all data]
Gaw and Swinton, 1968
Gaw, W.J.; Swinton, F.L.,
Thermodynamic properties of binary systems containing hexafluorobenzene. Part 3.?Excess Gibbs free energy of the system hexafluorobenzene + cyclohexane,
Trans. Faraday Soc., 1968, 64, 637, https://doi.org/10.1039/tf9686400637
. [all data]
Cruickshank and Cutler, 1967
Cruickshank, Austin J.B.; Cutler, A.J.B.,
Vapor pressure of cyclohexane, 25 to 75.degree.,
J. Chem. Eng. Data, 1967, 12, 3, 326-329, https://doi.org/10.1021/je60034a010
. [all data]
Marinichev and Susarev, 1965
Marinichev, A.N.; Susarev, M.P.,
Zh. Prikl. Khim. (S.-Peterburg), 1965, 38, 378. [all data]
McCullough, Person, et al., 1951
McCullough, J.P.; Person, W.B.; Spitzer, Ralph,
The Heats of Vaporization and Vapor Heat Capacities of Some Dimethylcyclohexanes 1,
J. Am. Chem. Soc., 1951, 73, 9, 4069-4071, https://doi.org/10.1021/ja01153a003
. [all data]
Spitzer and Pitzer, 1946
Spitzer, Ralph; Pitzer, Kenneth S.,
The Heat Capacity of Gaseous Cyclopentane, Cyclohexane and Methylcyclohexane,
J. Am. Chem. Soc., 1946, 68, 12, 2537-2538, https://doi.org/10.1021/ja01216a032
. [all data]
Kerns, Anthony, et al., 1974
Kerns, W.J.; Anthony, R.G.; Eubank, P.T.,
Volumetric Properties of Cyclohexane Vapor,
AIChE Symp. Ser., 1974, 70, 140, 14-21. [all data]
Gaw and Swinton, 1968, 2
Gaw, W.J.; Swinton, F.L.,
Thermodynamic Properties of Binary Systems Containing Hexafluorobenzene. Part 3. Excess Gibbs Free Energy of the System Hexafluorobenzene + Cyclohexane,
Trans. Faraday Soc., 1968, 64, 637-647, https://doi.org/10.1039/tf9686400637
. [all data]
Marinichev and Susarev, 1965, 2
Marinichev, A.N.; Susarev, M.P.,
Study of a Liquid-Vapor Equilibrium in the Systems of Acetone/Methanol and Acetone/Cyclohexane at Temperatures 35, 45, 55 ºC and Pressure 760 Torr,
Zh. Prikl. Khim. (Moscow), 1965, 38, 378-383. [all data]
Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons,
J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009
. [all data]
Bondi, 1963
Bondi, A.,
Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments.,
J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027
. [all data]
Jones, 1960
Jones, A.H.,
Sublimation Pressure Data for Organic Compounds.,
J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Rotinjanz and Nagornow, 1934
Rotinjanz, L.; Nagornow, N.,
Z. Phys. Chem. Abt. A, 1934, 169, 20. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Ruehrwein and Huffman, 1943
Ruehrwein, R.A.; Huffman, H.M.,
Thermal data. XVII. The heat capacity, entropy and free energy of formation of cyclohexane. A new method of heat transfer in low temperature calorimetry,
J. Am. Chem. Soc., 1943, 65, 1620-1625. [all data]
Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H.,
The heat capacity of benzene-d6,
J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]
Parks, Huffman, et al., 1930
Parks, G.S.; Huffman, H.M.; Thomas, S.B.,
Thermal data on organic compounds. VI. The heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons,
J. Am. Chem. Soc., 1930, 52, 1032-1041. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P.,
Ionization energies of homologous organic compounds and correlation with molecular size,
Org. Mass Spectrom., 1991, 26, 537. [all data]
Arimura and Yoshikawa, 1984
Arimura, M.; Yoshikawa, Y.,
Ionization efficiency and ionization energy of cyclic compounds by electron impact,
Mass Spectrosc. (Tokyo), 1984, 32, 375. [all data]
Sieck and Mautner(Meot-Ner), 1982
Sieck, L.W.; Mautner(Meot-Ner), M.,
Ionization energies and entropies of cycloalkanes. Kinetics of free energy controlled charge-transfer reactions,
J. Phys. Chem., 1982, 86, 3646. [all data]
Lias, 1982
Lias, S.G.,
Thermochemical information from ion-molecule rate constants,
Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]
Kovac and Klasinc, 1978
Kovac, B.; Klasinc, L.,
Photoelectron spectroscopy of adamantane and some adamantanones,
Croat. Chem. Acta, 1978, 51, 55. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Lossing and Traeger, 1975
Lossing, F.P.; Traeger, J.C.,
Stabilization in cyclopentadienyl, cyclopentenyl, and cyclopentyl cations,
J. Am. Chem. Soc., 1975, 97, 1579. [all data]
Rang, Paldoia, et al., 1974
Rang, S.; Paldoia, P.; Talvari, A.,
Ionization potentials of unsaturated hydrocarbons. 2. Mono-substituted cyclopentenes and cyclohexenes,
Eesti. NSV Tead. Akad. Toim., 1974, 354. [all data]
Puttemans, 1974
Puttemans, J.P.,
Ionisation de cycloalcanes (C5 a C12) en spectroscopie photoelectronique et par impact electronique,
Ing. Chim. (Brussels), 1974, 56, 64. [all data]
Sergeev, Akopyan, et al., 1973
Sergeev, Yu.L.; Akopyan, M.E.; Vilesov, F.I.; Chizhov, Yu.V.,
Photoionization processes in gaseous cyclohexane, and chloro- and bromocyclohexane,
High Energy Chem., 1973, 7, 369, In original 418. [all data]
Ikuta, Yoshihara, et al., 1973
Ikuta, S.; Yoshihara, K.; Shiokawa, T.; Jinno, M.; Yokoyama, Y.; Ikeda, S.,
Photoelectron spectroscopy of cyclohexane, cyclopentane, and some related compounds,
Chem. Lett., 1973, 1237. [all data]
Raymonda, 1972
Raymonda, J.W.,
Rydberg states in cyclic alkanes,
J. Chem. Phys., 1972, 56, 3912. [all data]
Demeo and Yencha, 1970
Demeo, D.A.; Yencha, A.J.,
Photoelectron spectra of bicyclic and exocyclic olefins,
J. Chem. Phys., 1970, 53, 4536. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials,
J. Chem. Soc., 1964, 4434. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Hustrulid, Kusch, et al., 1938
Hustrulid, A.; Kusch, P.; Tate, J.T.,
The dissociation of benzene (C6H6), pyridine (C5H5N) and cyclohexane (C6H12) by electron impact,
Phys. Rev., 1938, 54, 1037. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Bruckmann and Klessinger, 1973
Bruckmann, P.; Klessinger, M.,
Photoelektronenspektren organischer verbindungen. III. Photoelektronenspektren acetylensubstituierter kleiner ringe,
J. Electron Spectrosc. Relat. Phenom., 1973, 2, 341. [all data]
Rabbih, Selim, et al., 1981
Rabbih, M.A.; Selim, E.T.M.; Fahmey, M.A.,
Ionization & fragmentation of cyclohexane,
Indian J. Pure Appl. Phys., 1981, 19, 962. [all data]
Lossing and Traeger, 1975, 2
Lossing, F.P.; Traeger, J.C.,
Free radicals by mass spectrometry XLVI. Heats of formation of C5H7 and C5H9 radicals and cations.,
J. Am. Chem. Soc., 1975, 19, 9. [all data]
Pottie, Harrison, et al., 1961
Pottie, R.F.; Harrison, A.G.; Lossing, F.P.,
Free radicals by mass spectrometry. XXIV. Ionization potentials of cycloalkyl free radicals and cycloalkanes,
J. Am. Chem. Soc., 1961, 83, 3204. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B.,
Acidity order of selected bronsted acids in the gas phase at 300K,
J. Am. Chem. Soc., 1972, 94, 5153. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy Pc Critical pressure S°gas Entropy of gas at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.