Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Pentane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Deltafgas-35.08 ± 0.14kcal/molCcbGood, 1970ALS
Deltafgas-35.16 ± 0.24kcal/molCmPilcher and Chadwick, 1967ALS
Deltafgas-35.00 ± 0.16kcal/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Deltacgas-844.99 ± 0.23kcal/molCmPilcher and Chadwick, 1967Corresponding «DELTA»fgas = -35.16 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacgas-845.27 ± 0.21kcal/molCcbRossini, 1934Corresponding «DELTA»fgas = -34.88 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas83.13 ± 0.20cal/mol*KN/AMesserly G.H., 1940Scott [ Scott D.W., 1974] has calculated the value of S(298.15 K)=349.49(0.71) J/mol*K on the basis of data [ Messerly G.H., 1940].; GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
28.697 ± 0.057298.15Kharin V.E., 1985Experimental data [ Sage B.H., 1937] are less accurate than selected ones. Please also see Hossenlopp I.A., 1981.; GT
30.554 ± 0.062323.15
32.481 ± 0.065348.15
34.405 ± 0.069373.15
36.310 ± 0.072398.15
38.162 ± 0.076423.15
40.002 ± 0.079448.15
40.179450.
41.766 ± 0.084473.15
43.494 ± 0.086498.15
43.592500.
45.191 ± 0.091523.15
46.836550.
50.007600.
53.043650.
55.664700.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
22.36200.Scott D.W., 1974, 2Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, Scott D.W., 1974, 2]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT
26.900273.15
28.69 ± 0.02298.15
28.829300.
36.460400.
43.640500.
49.900600.
55.301700.
59.900800.
63.800900.
67.2991000.
70.2011100.
72.8011200.
75.0001300.
77.0001400.
79.0011500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Deltafliquid-41.47 ± 0.14kcal/molCcbGood, 1970ALS
Deltafliquid-41.36 ± 0.16kcal/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Deltacliquid-838.68 ± 0.11kcal/molCcbGood, 1970Corresponding «DELTA»fliquid = -41.47 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-838.80 ± 0.14kcal/molCcbProsen and Rossini, 1945Corresponding «DELTA»fliquid = -41.35 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-838.71 ± 0.18kcal/molCcbProsen and Rossini, 1944Corresponding «DELTA»fliquid = -41.44 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid62.971cal/mol*KN/AMesserly, Guthrie, et al., 1967DH
liquid62.780cal/mol*KN/AMesserly and Kennedy, 1940DH
liquid62.00cal/mol*KN/AParks and Huffman, 1930Extrapolation below 90 K, 56.61 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
40.30298.Grigor'ev, Rastorguev, et al., 1975T = 300 to 463 K.; DH
39.959298.15Messerly, Guthrie, et al., 1967T = 12 to 300 K.; DH
40.151290.Messerly and Kennedy, 1940T = 12 to 290 K.; DH
39.01290.0Parks and Huffman, 1930T = 93 to 290 K. Value is unsmoothed experimental datum.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

1-Pentene + Hydrogen = Pentane

By formula: C5H10 + H2 = C5H12

Quantity Value Units Method Reference Comment
Deltar-30.27 ± 0.58kcal/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Deltar-29.87 ± 0.42kcal/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Hexane; ALS
Deltar-29.30 ± 0.57kcal/molChydRogers and Skanupong, 1974liquid phase; solvent: Hexane; ALS
Deltar-28.5 ± 0.3kcal/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS

C10H12CrO5 (solution) = Pentane (solution) + C5CrO5 (solution)

By formula: C10H12CrO5 (solution) = C5H12 (solution) + C5CrO5 (solution)

Quantity Value Units Method Reference Comment
Deltar8.91kcal/molN/AMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C5H12(solution) = Cr(CO)5(n-C5H12)(solution) + CO(solution), 27.89 kcal/mol Morse, Parker, et al., 1989; MS

Pentane (solution) + Chromium hexacarbonyl (solution) = C10H12CrO5 (solution) + Carbon monoxide (solution)

By formula: C5H12 (solution) + C6CrO6 (solution) = C10H12CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Deltar27.9 ± 2.5kcal/molPACMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS

3Hydrogen + 3-Penten-1-yne, (Z)- = Pentane

By formula: 3H2 + C5H6 = C5H12

Quantity Value Units Method Reference Comment
Deltar-96.8 ± 0.1kcal/molChydRoth, Adamczak, et al., 1991liquid phase; ALS
Deltar-95.6 ± 1.1kcal/molChydSkinner and Snelson, 1959liquid phase; solvent: Acetic acid; ALS

3Hydrogen + 3-Penten-1-yne, (E)- = Pentane

By formula: 3H2 + C5H6 = C5H12

Quantity Value Units Method Reference Comment
Deltar-97.0 ± 0.3kcal/molChydRoth, Adamczak, et al., 1991liquid phase; ALS
Deltar-96.0 ± 0.4kcal/molChydSkinner and Snelson, 1959liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 1,4-Pentadiene = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Deltar-60.22 ± 0.15kcal/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -60.79 ± 0.15 kcal/mol; At 355 °K; ALS

Phenol (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + Pentane (solution)

By formula: C6H6O (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-48.4 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Hydrogen bromide (g) = Pentane (solution) + Br2Mg (solution)

By formula: C5H11BrMg (solution) + HBr (g) = C5H12 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Deltar-73.21 ± 0.53kcal/molRSCHolm, 1981solvent: Diethyl ether; MS

Ethanol (solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + Pentane (solution)

By formula: C2H6O (solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-47.7 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Methylamine (solution) = CH4BrMgN (solution) + Pentane (solution)

By formula: C5H11BrMg (solution) + CH5N (solution) = CH4BrMgN (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-31.19 ± 0.60kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

2Hydrogen + Cyclopropane,ethenyl- = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Deltar-65.5 ± 0.2kcal/molChydRoth, Kirmse, et al., 1982liquid phase; solvent: Isooctane; ALS

C5O5W (g) + Pentane (g) = C10H12O5W (g)

By formula: C5O5W (g) + C5H12 (g) = C10H12O5W (g)

Quantity Value Units Method Reference Comment
Deltar-10.6 ± 3.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K; MS

C5H11BrMg (solution) + Methane (solution) = Pentane (solution) + CH3BrMg (solution)

By formula: C5H11BrMg (solution) + CH4 (solution) = C5H12 (solution) + CH3BrMg (solution)

Quantity Value Units Method Reference Comment
Deltar-3.6 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Propanedinitrile (solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + Pentane (solution)

By formula: C3H2N2 (solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-48.59kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Diphenylamine (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + Pentane (solution)

By formula: C12H11N (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-28.39kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Trifluoroacetic acid (solution) = C2BrF3MgO2 (solution) + Pentane (solution)

By formula: C5H11BrMg (solution) + C2HF3O2 (solution) = C2BrF3MgO2 (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-65.39kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Phenol, pentafluoro- (solution) = C6BrF5MgO (cr) + Pentane (solution)

By formula: C5H11BrMg (solution) + C6HF5O (solution) = C6BrF5MgO (cr) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-55.90kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Ethanol, 2,2,2-trifluoro- (solution) = C2H2BrF3MgO (solution) + Pentane (solution)

By formula: C5H11BrMg (solution) + C2H3F3O (solution) = C2H2BrF3MgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-47.71kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Methyl Alcohol (solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + Pentane (solution)

By formula: CH4O (solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-52.51kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

2Hydrogen + 1,3-Pentadiene = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Deltar-54.11 ± 0.15kcal/molChydDolliver, Gresham, et al., 1937gas phase; At 355 °K; ALS

Pentane = Butane, 2-methyl-

By formula: C5H12 = C5H12

Quantity Value Units Method Reference Comment
Deltar-1.861kcal/molEqkPines, Kvetinskas, et al., 1945gas phase; Heat of isomerization; ALS

Hydrogen + 2-Pentene, (Z)- = Pentane

By formula: H2 + C5H10 = C5H12

Quantity Value Units Method Reference Comment
Deltar-28.1 ± 0.2kcal/molChydEgger and Benson, 1966gas phase; ALS

Hydrogen + 2-Pentene, (E)- = Pentane

By formula: H2 + C5H10 = C5H12

Quantity Value Units Method Reference Comment
Deltar-27.2 ± 0.2kcal/molChydEgger and Benson, 1966gas phase; ALS

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good, 1970
Good, W.D., The enthalpies of combustion and formation of the isomeric pentanes, J. Chem. Thermodyn., 1970, 2, 237-244. [all data]

Pilcher and Chadwick, 1967
Pilcher, G.; Chadwick, J.D.M., Measurements of heats of combustion by flame calorimetry. Part 4.-n-Pentane, isopentane, neopentane, Trans. Faraday Soc., 1967, 63, 2357-2361. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Rossini, 1934
Rossini, F.D., Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane, J. Res. NBS, 1934, 12, 735-750. [all data]

Messerly G.H., 1940
Messerly G.H., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-pentane, J. Am. Chem. Soc., 1940, 62, 2988-2991. [all data]

Scott D.W., 1974
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Kharin V.E., 1985
Kharin V.E., Isobaric heat capacity of n-pentane in the vapor phase, Izv. Vyssh. Ucheb. Zaved., Neft. Gaz, 1985, 28, 63-66. [all data]

Sage B.H., 1937
Sage B.H., Phase equilibria in hydrocarbon systems. XX. Isobaric heat capacity of gaseous propane, n-butane, isobutane, and n-pentane, Ind. Eng. Chem., 1937, 29, 1309-1314. [all data]

Hossenlopp I.A., 1981
Hossenlopp I.A., Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons, J. Chem. Thermodyn., 1981, 13, 415-421. [all data]

Scott D.W., 1974, 2
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Pitzer K.S., 1946
Pitzer K.S., The entropies and related properties of branched paraffin hydrocarbons, Chem. Rev., 1946, 39, 435-447. [all data]

Prosen and Rossini, 1944
Prosen, E.J.; Rossini, F.D., Heats of combustion of eight normal paraffin hydrocarbons in the liquid state, J. Res. NBS, 1944, 33, 255-272. [all data]

Messerly, Guthrie, et al., 1967
Messerly, J.F.; Guthrie, G.B.; Todd, S.S.; Finke, H.L., Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane, J. Chem. Eng. Data, 1967, 12, 338-346. [all data]

Messerly and Kennedy, 1940
Messerly, G.H.; Kennedy, R.M., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-pentane, J. Am. Chem. Soc., 1940, 62, 2988-2991. [all data]

Parks and Huffman, 1930
Parks, G.S.; Huffman, H.M., Thermal data on organic compounds. IX. A study of the effect of unsaturation on the heat capacities, entropies and free energies of some hydrocarbons and other compounds, J. Am. Chem. Soc., 1930, 52, 4381-4391. [all data]

Grigor'ev, Rastorguev, et al., 1975
Grigor'ev, B.A.; Rastorguev, Yu.L.; Yanin, G.S., Experimental determination of the isobaric specific heat of n-alkanes, Iz. Vyssh. Uchebn. Zaved. Neft Gaz 18, 1975, No.10, 63-66. [all data]

Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R., Heats of hydrogenation by a simple and rapid flow calorimetric method, Appl. Catal., 1984, 9, 219-223. [all data]

Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S., Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect, J. Phys. Chem., 1974, 78, 2569-2572. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Skinner and Snelson, 1959
Skinner, H.A.; Snelson, A., Heats of hydrogenation Part 3., Trans. Faraday Soc., 1959, 55, 405-407. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Holm, 1983
Holm, T., Acta Chem. Scand. B, 1983, 37, 797. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Roth, Kirmse, et al., 1982
Roth, W.R.; Kirmse, W.; Hoffmann, W.; Lennartz, H.W., Heats of hydrogenation. III. Effect of fluoro substituents on the thermal rearrangement of cyclopropane systems, Chem. Ber., 1982, 115, 2508-2515. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Pines, Kvetinskas, et al., 1945
Pines, H.; Kvetinskas, B.; Kassel, L.S.; Ipatieff, V.N., Determination of equilibrium constants for butanes and pentanes, J. Am. Chem. Soc., 1945, 67, 631-637. [all data]

Egger and Benson, 1966
Egger, K.W.; Benson, S.W., Nitric oxide and iodine catalyzed isomerization of olefins. VI. Thermodynamic data from equilibrium studies of the geometrical and positional isomerization of n-pentenes, J. Am. Chem. Soc., 1966, 88, 236-240. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References