Pyridine, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-26.5kJ/molN/AKosorotov, Zemlyakova, et al., 1978Value computed using ΔfHliquid° value of -69.0 kj/mol from Kosorotov, Zemlyakova, et al., 1978 and ΔvapH° value of 42.5 kj/mol from Scott, Hubbard, et al., 1963.; DRB
Δfgas98.95 ± 0.88kJ/molCcbScott, Hubbard, et al., 1963ALS
Δfgas101.9 ± 1.3kJ/molCmAndon, Cox, et al., 1957ALS
Δfgas102.0 ± 1.3kJ/molCcbCox, Challoner, et al., 1954ALS
Δfgas87.7kJ/molN/AConstam and White, 1903Value computed using ΔfHliquid° value of 45.3 kj/mol from Constam and White, 1903 and ΔvapH° value of 42.5 kj/mol from Scott, Hubbard, et al., 1963.; DRB

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-68.99kJ/molCcbKosorotov, Zemlyakova, et al., 1978impure compound; ALS
Δfliquid56.48 ± 0.75kJ/molCcbScott, Hubbard, et al., 1963ALS
Δfliquid59.0 ± 1.3kJ/molCcbCox, Challoner, et al., 1954ALS
Δfliquid45.27kJ/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
Δcliquid-3292.4kJ/molCcbKosorotov, Zemlyakova, et al., 1978impure compound; ALS
Δcliquid-3418.0 ± 0.67kJ/molCcbScott, Hubbard, et al., 1963ALS
Δcliquid-3420.5 ± 1.3kJ/molCcbCox, Challoner, et al., 1954ALS
Δcliquid-3415.kJ/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
liquid217.86J/mol*KN/AScott, Hubbard, et al., 1963DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
158.41298.15Scott, Hubbard, et al., 1963T = 12 to 370 K.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H6N- + Hydrogen cation = Pyridine, 2-methyl-

By formula: C6H6N- + H+ = C6H7N

Quantity Value Units Method Reference Comment
Δr1577. ± 13.kJ/molG+TSDePuy, Kass, et al., 1988gas phase; Acid: 2-methylpyridine. Between EtOH, iPrOH; B
Quantity Value Units Method Reference Comment
Δr1548. ± 13.kJ/molIMRBDePuy, Kass, et al., 1988gas phase; Acid: 2-methylpyridine. Between EtOH, iPrOH; B

C6H8N+ + Pyridine, 2-methyl- = (C6H8N+ • Pyridine, 2-methyl-)

By formula: C6H8N+ + C6H7N = (C6H8N+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr96.2kJ/molPHPMSMeot-Ner M. and Sieck, 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr116.J/mol*KPHPMSMeot-Ner M. and Sieck, 1983gas phase; M

Lithium ion (1+) + Pyridine, 2-methyl- = (Lithium ion (1+) • Pyridine, 2-methyl-)

By formula: Li+ + C6H7N = (Li+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr194. ± 6.7kJ/molCIDTRodgers, 2001RCD

Sodium ion (1+) + Pyridine, 2-methyl- = (Sodium ion (1+) • Pyridine, 2-methyl-)

By formula: Na+ + C6H7N = (Na+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr128. ± 4.6kJ/molCIDTRodgers, 2001RCD

Potassium ion (1+) + Pyridine, 2-methyl- = (Potassium ion (1+) • Pyridine, 2-methyl-)

By formula: K+ + C6H7N = (K+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr98. ± 3.kJ/molCIDTRodgers, 2001RCD

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Kosorotov, Zemlyakova, et al., 1978
Kosorotov, V.I.; Zemlyakova, Z.F.; Platonov, V.A.; Ovchinnikov, V.G.; Simulin, Yu.N.; Dzhagatspanyan, R.V., Determination of thermal effects of the synthesis of chloropicolines and chloroaminopicolines, J. Appl. Chem. USSR (Engl. Transl.), 1978, 51, 2262-2263, In original 2376. [all data]

Scott, Hubbard, et al., 1963
Scott, D.W.; Hubbard, W.N.; Messerly, J.F.; Todd, S.S.; Hossenlopp, I.A.; Good, W.D.; Douslin, D.R.; McCullough, J.P., Chemical thermodynamic properties and internal rotation of methylpyridines. I. 2-methylpyridine, J. Phys. Chem., 1963, 67, 680-685. [all data]

Andon, Cox, et al., 1957
Andon, R.J.L.; Cox, J.D.; Herington, E.F.G.; Martin, J.F., The second virial coefficients of pyridine and benzene, and certain of their methyl homologues, Trans. Faraday Soc., 1957, 53, 1074. [all data]

Cox, Challoner, et al., 1954
Cox, J.D.; Challoner, A.R.; Meetham, A.R., The heats of combustion of pyridine and certain of its derivatives, J. Chem. Soc., 1954, 265-271. [all data]

Constam and White, 1903
Constam, E.J.; White, J., Physico-chemical investigations in the pyridine series, Am. Chem. J., 1903, 29, 1-49. [all data]

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]

Meot-Ner M. and Sieck, 1983
Meot-Ner M.; Sieck, L.W., The Ionic Hydrogen Bond. 1. Sterically Hindered Bonds. Solvation and Clustering of Sterically Hindered Amines and Pyridines, J. Am. Chem. Soc., 1983, 105, 10, 2956, https://doi.org/10.1021/ja00348a005 . [all data]

Rodgers, 2001
Rodgers, M.T., Substituent Effects in the Binding of Alkali Metal Ions to Pyridines, Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Methylpyridines, J. Phys. Chem. A, 2001, 105, 11, 2374, https://doi.org/10.1021/jp004055z . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References