Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Phenol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Deltafgas-23.03 ± 0.14kcal/molCcbCox, 1961ALS
Deltafgas-23.05 ± 0.15kcal/molCcbAndon, Biddiscombe, et al., 1960ALS
Deltafgas-22.5kcal/molN/AParks, Manchester, et al., 1954Value computed using «DELTA»fHsolid° value of -162.8±1.0 kj/mol from Parks, Manchester, et al., 1954 and «DELTA»subH° value of 68.6 kj/mol from Cox, 1961.; DRB
Deltafgas-22.8kcal/molN/ABadoche, 1941Value computed using «DELTA»fHsolid° value of -163.9 kj/mol from Badoche, 1941 and «DELTA»subH° value of 68.6 kj/mol from Cox, 1961.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.10550.Kudchadker S.A., 1978Recommended S(T) and Cp(T) values are in close agreement with statistical values calculated by [ Evans J.C., 1960, Green J.H.S., 1961]. Entropy value calculated by [ Sarin V.N., 1973] agrees well with the third-law entropy at 298.15 K but not at 400 K. Statistical values calculated by [ Ramaswamy V., 1970] seem to be erroneous.; GT
9.890100.
12.95150.
16.65200.
22.61273.15
24.670298.15
24.823300.
32.455400.
38.697500.
43.614600.
47.524700.
50.703800.
53.344900.
55.5661000.
57.4591100.
59.0821200.
60.4831300.
61.6921400.
62.7441500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Deltafsolid-39.44kcal/molCcbCox, 1961ALS
Deltafsolid-39.46 ± 0.30kcal/molCcbAndon, Biddiscombe, et al., 1960ALS
Deltafsolid-38.90 ± 0.25kcal/molCcbParks, Manchester, et al., 1954ALS
Deltafsolid-39.18kcal/molCcbBadoche, 1941Author's hf298_condensed=-41.49 kcal/mol; ALS
Quantity Value Units Method Reference Comment
Deltacsolid-731. ± 3.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
solid,1 bar34.419cal/mol*KN/AAndon, Counsell, et al., 1963DH
solid,1 bar34.11cal/mol*KN/AParks, Huffman, et al., 1933Extrapolation below 90 K, 49.04 J/mol*K.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
30.404298.15Nichols and Wads, 1975DH
47.75313.Rastorguev and Ganiev, 1967T = 313 to 373 K.; DH
30.459298.15Andon, Counsell, et al., 1963T = 13 to 336 K.; DH
22.4293.Campbell and Campbell, 1940DH
24.81229.3Aoyama and Kanda, 1935T = 78 to 229 K. Value is unsmoothed experimental datum.; DH
31.809295.8Parks, Huffman, et al., 1933T = 93 to 296 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny, director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil455.0 ± 0.6KAVGN/AAverage of 26 out of 28 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus314. ± 1.KAVGN/AAverage of 61 out of 62 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple314.06KN/AAndon, Counsell, et al., 1963, 2Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Tc694.3KN/ADelaunois, 1968Uncertainty assigned by TRC = 0.4 K; TRC
Tc694.25KN/AAmbrose, 1963Uncertainty assigned by TRC = 0.15 K; TRC
Tc692.4KN/ARadice, 1899Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Pc58.52atmN/ADelaunois, 1968Uncertainty assigned by TRC = 0.7742 atm; TRC
Pc60.5000atmN/AHerz and Neukirch, 1923Uncertainty assigned by TRC = 0.8000 atm; TRC
Quantity Value Units Method Reference Comment
Deltavap14.1kcal/molCGCChickos, Hosseini, et al., 1995Based on data from 393. - 433. K.; AC
Quantity Value Units Method Reference Comment
Deltasub16.7 ± 0.2kcal/molMEParsons, Rochester, et al., 1971Based on data from 230. - 273. K.; AC
Deltasub16.4kcal/molN/ACox, 1961DRB
Deltasub16.41 ± 0.12kcal/molVAndon, Biddiscombe, et al., 1960ALS
Deltasub16.4kcal/molN/AAndon, Biddiscombe, et al., 1960DRB

Enthalpy of vaporization

DeltavapH (kcal/mol) Temperature (K) Method Reference Comment
12.7378.EBChylinski, Fras, et al., 2001Based on data from 363. - 391. K.; AC
11.8470.AStephenson and Malanowski, 1987Based on data from 455. - 655. K.; AC
13.7329.AStephenson and Malanowski, 1987Based on data from 314. - 395. K.; AC
12.2402.AStephenson and Malanowski, 1987Based on data from 387. - 456. K.; AC
11.2464.AStephenson and Malanowski, 1987Based on data from 449. - 526. K.; AC
10.5535.AStephenson and Malanowski, 1987Based on data from 520. - 625. K.; AC
12.3398.EB,GSStephenson and Malanowski, 1987Based on data from 383. - 473. K. See also Andon, Biddiscombe, et al., 1960, 2 and Dykyj, 1972.; AC
12.3395.N/ADreisbach and Shrader, 1949Based on data from 380. - 455. K. See also Dreisbach and Martin, 1949 and Boublik, Fried, et al., 1984.; AC
11.5434.N/AGoldblum, Martin, et al., 1947Based on data from 414. - 454. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
380.30 - 454.904.241171509.677-98.949Dreisbach and Shrader, 1949Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

DeltasubH (kcal/mol) Temperature (K) Method Reference Comment
15.6 ± 0.79280.HSAChickos, 1975Based on data from 263. - 298. K.; AC
16.4 ± 0.1282. - 313.GSAndon, Biddiscombe, et al., 1960, 2See also Cox and Pilcher, 1970.; AC
16.3293.MESklyarenko, Markin, et al., 1958Based on data from 283. - 303. K.; AC
16.3292.N/ANitta and Seki, 1948Based on data from 270. - 313. K.; AC
16.2278. - 305.TEBalson, 1947See also Jones, 1960.; AC

Enthalpy of fusion

DeltafusH (kcal/mol) Temperature (K) Reference Comment
2.7519314.06Andon, Counsell, et al., 1963DH
2.8979314.13Mastrangelo, 1957DH
2.751314.Inozemtsev, Liakumovich, et al., 1972See also Domalski and Hearing, 1996.; AC
2.5289312.7Eykman, 1889DH

Entropy of fusion

DeltafusS (cal/mol*K) Temperature (K) Reference Comment
8.762314.06Andon, Counsell, et al., 1963DH
7.96314.Bret-Dibat and Lichanot, 1989CAL
8.08312.7Eykman, 1889DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

phenoxide anion + Hydrogen cation = Phenol

By formula: C6H5O- + H+ = C6H6O

Quantity Value Units Method Reference Comment
Deltar349. ± 2.kcal/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar342.3 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Shiner, Vorner, et al., 1986: tautomer acidities «DELTA»Hacid(ortho) = 343.9±3.1 kcal, para = 340.1±2 kcal. However, Capponi, Gut, et al., 1999 based on aq. soln. results, imply 18 and 14 kcal/mol difference.; value altered from reference due to change in acidity scale; B
Deltar340.8 ± 1.9kcal/molCIDCAngel and Ervin, 2004gas phase; B
Deltar343.4 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B
Deltar>341.5 ± 1.8kcal/molH-TSRichardson, Stephenson, et al., 1975gas phase; B

Chlorine anion + Phenol = (Chlorine anion bullet Phenol)

By formula: Cl- + C6H6O = (Cl- bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar26.0 ± 2.0kcal/molTDAsFrench, Ikuta, et al., 1982gas phase; B,M
Deltar26.0 ± 2.0kcal/molTDEqCummings, French, et al., 1977gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B
Deltar27.4kcal/molPHPMSKebarle, 1977gas phase; M
Deltar26.5kcal/molPHPMSPaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M
Deltar19.4 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1971gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar26.0cal/mol*KPHPMSFrench, Ikuta, et al., 1982gas phase; M
Deltar25.cal/mol*KPHPMSKebarle, 1977gas phase; M
Deltar25.cal/mol*KN/APaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M
Deltar15.5cal/mol*KPHPMSYamdagni and Kebarle, 1971gas phase; M
Quantity Value Units Method Reference Comment
Deltar19.2 ± 2.0kcal/molTDAsFrench, Ikuta, et al., 1982gas phase; B
Deltar18.5 ± 2.0kcal/molTDEqCummings, French, et al., 1977gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B
Deltar14.8 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1971gas phase; B

Free energy of reaction

DeltarG° (kcal/mol) T (K) Method Reference Comment
15.9423.PHPMSPaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M

Fluorine anion + Phenol = (Fluorine anion bullet Phenol)

By formula: F- + C6H6O = (F- bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar41.3 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Deltar26.3cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Deltar33.5 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

Bromine anion + Phenol = (Bromine anion bullet Phenol)

By formula: Br- + C6H6O = (Br- bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar20.8 ± 1.8kcal/molIMREPaul and Kebarle, 1990gas phase; «DELTA»Gaff at 423 K; B,M
Deltar19.6kcal/molPHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar20.cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Deltar23.cal/mol*KN/APaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar11.1 ± 1.0kcal/molIMREPaul and Kebarle, 1990gas phase; «DELTA»Gaff at 423 K; B

Free energy of reaction

DeltarG° (kcal/mol) T (K) Method Reference Comment
11.1423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
11.1423.PHPMSPaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M

Iodide + Phenol = (Iodide bullet Phenol)

By formula: I- + C6H6O = (I- bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar17.3 ± 1.8kcal/molIMREPaul and Kebarle, 1990gas phase; «DELTA»Gaff at 423 K; B,M
Quantity Value Units Method Reference Comment
Deltar21.cal/mol*KN/APaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar8.4 ± 1.0kcal/molIMREPaul and Kebarle, 1990gas phase; «DELTA»Gaff at 423 K; B

Free energy of reaction

DeltarG° (kcal/mol) T (K) Method Reference Comment
8.4423.PHPMSPaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M

MeCO2 anion + Phenol = (MeCO2 anion bullet Phenol)

By formula: C2H3O2- + C6H6O = (C2H3O2- bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar26.1 ± 1.0kcal/molN/AMeot-Ner and Sieck, 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar24.0cal/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Deltar18.9 ± 1.6kcal/molTDAsMeot-Ner and Sieck, 1986gas phase; B

Sodium ion (1+) + Phenol = (Sodium ion (1+) bullet Phenol)

By formula: Na+ + C6H6O = (Na+ bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar24.4 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002RCD
Deltar23.5 ± 0.8kcal/molCIDTArmentrout and Rodgers, 2000RCD

Free energy of reaction

DeltarG° (kcal/mol) T (K) Method Reference Comment
16.7298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

Phenol + Phenol, 2,4-bis(1-methylethyl)- = Phenol, 2-(1-methylethyl)- + p-Cumenol

By formula: C6H6O + C12H18O = C9H12O + C9H12O

Quantity Value Units Method Reference Comment
Deltar-0.2 ± 0.24kcal/molEqkNesterova, Pimerzin, et al., 1989liquid phase; Isomerization; ALS
Deltar-0.16 ± 0.24kcal/molEqkNesterova, Pilyshchikov, et al., 1983liquid phase; GC; ALS

C22H20O2Ti (cr) + 2(Hydrogen chloride bullet 5.55Water) (solution) = 2Phenol (cr) + Titanocene dichloride (cr)

By formula: C22H20O2Ti (cr) + 2(HCl bullet 5.55H2O) (solution) = 2C6H6O (cr) + C10H10Cl2Ti (cr)

Quantity Value Units Method Reference Comment
Deltar-1.4 ± 0.60kcal/molRSCDias, Salema, et al., 1981Please also see Calhorda, Carrondo, et al., 1986.; MS

Phenol (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + Pentane (solution)

By formula: C6H6O (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Deltar-48.4 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C20H32Zr (solution) + Phenol (solution) = C26H36OZr (solution) + Hydrogen (g)

By formula: C20H32Zr (solution) + C6H6O (solution) = C26H36OZr (solution) + H2 (g)

Quantity Value Units Method Reference Comment
Deltar-31.69 ± 0.41kcal/molRSCSchock and Marks, 1988solvent: Toluene; MS

C26H36OZr (solution) + Phenol (solution) = C32H40O2Zr (solution) + Hydrogen (g)

By formula: C26H36OZr (solution) + C6H6O (solution) = C32H40O2Zr (solution) + H2 (g)

Quantity Value Units Method Reference Comment
Deltar-20.7 ± 0.69kcal/molRSCSchock and Marks, 1988solvent: Toluene; MS

Acetic acid, phenyl ester + Water = Phenol + Acetic acid

By formula: C8H8O2 + H2O = C6H6O + C2H4O2

Quantity Value Units Method Reference Comment
Deltar-6.86 ± 0.04kcal/molCmWadso, 1960liquid phase; Heat of hydrolysis; ALS

Phenol + Phenol, 2,5-bis(1-methylpropyl)- = Phenol, 3-(1-methylpropyl)- + Phenol, 2-(1-methylpropyl)-

By formula: C6H6O + C14H22O = C10H14O + C10H14O

Quantity Value Units Method Reference Comment
Deltar-0.62 ± 0.26kcal/molEqkNesterova, Pimerzin, et al., 1989liquid phase; Isomerization; ALS

Phenol + C18H30O = Phenol, 2,4-bis(1-methylpropyl)- + Phenol, 2-(1-methylpropyl)-

By formula: C6H6O + C18H30O = C14H22O + C10H14O

Quantity Value Units Method Reference Comment
Deltar-0.41 ± 0.36kcal/molEqkNesterova, Pimerzin, et al., 1989liquid phase; Isomerization; ALS

Phenol + Phenol, 2,4-bis(1-methylpropyl)- = Phenol, 2-(1-methylpropyl)- + Phenol, 4-(1-methylpropyl)-

By formula: C6H6O + C14H22O = C10H14O + C10H14O

Quantity Value Units Method Reference Comment
Deltar-0.76 ± 0.45kcal/molEqkNesterova, Pimerzin, et al., 1989liquid phase; Isomerization; ALS

Phenol + 3,5-Bis(2-butyl)phenol = 2Phenol, 3-(1-methylpropyl)-

By formula: C6H6O + C14H22O = 2C10H14O

Quantity Value Units Method Reference Comment
Deltar-0.31 ± 0.50kcal/molEqkNesterova, Pimerzin, et al., 1989liquid phase; Isomerization; ALS

C6H5NaO (cr) + (Hydrogen chloride bullet 552Water) (solution) = Phenol (cr) + sodium chloride (cr)

By formula: C6H5NaO (cr) + (HCl bullet 552H2O) (solution) = C6H6O (cr) + ClNa (cr)

Quantity Value Units Method Reference Comment
Deltar-18.6 ± 1.4kcal/molRSCLeal, Pires de Matos, et al., 1991MS

Phenol + Phenol, 3,5-bis(1,1-dimethylethyl)- = Phenol, m-tert-butyl- + Phenol, p-tert-butyl-

By formula: C6H6O + C14H22O = C10H14O + C10H14O

Quantity Value Units Method Reference Comment
Deltar0.02 ± 0.17kcal/molEqkPil'shchikov, Nesterova, et al., 1981liquid phase; ALS

Phenol + 2,4-Di-tert-butylphenol = Phenol, 2-(1,1-dimethylethyl)- + Phenol, p-tert-butyl-

By formula: C6H6O + C14H22O = C10H14O + C10H14O

Quantity Value Units Method Reference Comment
Deltar-0.0 ± 0.9kcal/molEqkPil'shchikov, Nesterova, et al., 1981liquid phase; ALS

(Lithium ion (1+) bullet Phenol) + Phenol = (Lithium ion (1+) bullet 2Phenol)

By formula: (Li+ bullet C6H6O) + C6H6O = (Li+ bullet 2C6H6O)

Quantity Value Units Method Reference Comment
Deltar27.4 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002RCD

(Sodium ion (1+) bullet Phenol) + Phenol = (Sodium ion (1+) bullet 2Phenol)

By formula: (Na+ bullet C6H6O) + C6H6O = (Na+ bullet 2C6H6O)

Quantity Value Units Method Reference Comment
Deltar19.5 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002RCD

(Cesium ion (1+) bullet Phenol) + Phenol = (Cesium ion (1+) bullet 2Phenol)

By formula: (Cs+ bullet C6H6O) + C6H6O = (Cs+ bullet 2C6H6O)

Quantity Value Units Method Reference Comment
Deltar14.5 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002RCD

(Rubidium ion (1+) bullet Phenol) + Phenol = (Rubidium ion (1+) bullet 2Phenol)

By formula: (Rb+ bullet C6H6O) + C6H6O = (Rb+ bullet 2C6H6O)

Quantity Value Units Method Reference Comment
Deltar15.2 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002RCD

(Potassium ion (1+) bullet Phenol) + Phenol = (Potassium ion (1+) bullet 2Phenol)

By formula: (K+ bullet C6H6O) + C6H6O = (K+ bullet 2C6H6O)

Quantity Value Units Method Reference Comment
Deltar16.3 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002RCD

Phenol (cr) + C10H11ClZr (cr) = C16H15ClOZr (cr) + Hydrogen (g)

By formula: C6H6O (cr) + C10H11ClZr (cr) = C16H15ClOZr (cr) + H2 (g)

Quantity Value Units Method Reference Comment
Deltar-18.6 ± 1.0kcal/molRSCDiogo, Simoni, et al., 1993MS

Phenol + Phenol, 2,6-bis(1,1-dimethylethyl)- = 2Phenol, 2-(1,1-dimethylethyl)-

By formula: C6H6O + C14H22O = 2C10H14O

Quantity Value Units Method Reference Comment
Deltar-3.05 ± 0.13kcal/molEqkPil'shchikov, Nesterova, et al., 1981liquid phase; ALS

Phenol + Phenol, 2,5-bis(1,1-dimethylethyl)- = Phenol, m-tert-butyl- + Phenol, 2-(1,1-dimethylethyl)-

By formula: C6H6O + C14H22O = C10H14O + C10H14O

Quantity Value Units Method Reference Comment
Deltar0.0kcal/molEqkPil'shchikov, Nesterova, et al., 1981liquid phase; ALS

C6H5NaO (cr) + Water (l) = Phenol (cr) + Sodium hydroxide (cr)

By formula: C6H5NaO (cr) + H2O (l) = C6H6O (cr) + HNaO (cr)

Quantity Value Units Method Reference Comment
Deltar5.11 ± 0.86kcal/molRSCLeal, Pires de Matos, et al., 1991MS

Lithium ion (1+) + Phenol = (Lithium ion (1+) bullet Phenol)

By formula: Li+ + C6H6O = (Li+ bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar42.6 ± 4.0kcal/molCIDTAmunugama and Rodgers, 2002RCD

Cesium ion (1+) + Phenol = (Cesium ion (1+) bullet Phenol)

By formula: Cs+ + C6H6O = (Cs+ bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar15.7 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002RCD

Rubidium ion (1+) + Phenol = (Rubidium ion (1+) bullet Phenol)

By formula: Rb+ + C6H6O = (Rb+ bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar16.6 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002RCD

Potassium ion (1+) + Phenol = (Potassium ion (1+) bullet Phenol)

By formula: K+ + C6H6O = (K+ bullet C6H6O)

Quantity Value Units Method Reference Comment
Deltar17.7 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002RCD

Phenol, 2-(1-methylpropyl)- = 1-Butene + Phenol

By formula: C10H14O = C4H8 + C6H6O

Quantity Value Units Method Reference Comment
Deltar18.6kcal/molCmKukui, Potolovskii, et al., 1973liquid phase; ALS

Phenol, 4-(1-methylpropyl)- = 1-Butene + Phenol

By formula: C10H14O = C4H8 + C6H6O

Quantity Value Units Method Reference Comment
Deltar19.8kcal/molCmKukui, Potolovskii, et al., 1973liquid phase; ALS

Phenol, p-tert-butyl- = Phenol + 1-Propene, 2-methyl-

By formula: C10H14O = C6H6O + C4H8

Quantity Value Units Method Reference Comment
Deltar17.0 ± 0.50kcal/molEqkVerevkin, 1982gas phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1994
NIST MS number 133909

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, 1961
Cox, J.D., The heats of combustion of phenol and the three cresols, Pure Appl. Chem., 1961, 2, 125-128. [all data]

Andon, Biddiscombe, et al., 1960
Andon, R.J.L.; Biddiscombe, D.P.; Cox, J.D.; Handley, R.; Harrop, D.; Herington, E.F.G.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part I. Preparation and physical properties of pure phenol, cresols, and xylenols, J. Chem. Soc., 1960, 5246-5254. [all data]

Parks, Manchester, et al., 1954
Parks, G.S.; Manchester, K.E.; Vaughan, L.M., Heats of combustion and formation of some alcohols, phenols, and ketones, J. Chem. Phys., 1954, 22, 2089-2090. [all data]

Badoche, 1941
Badoche, M., No 19. - Chaleurs de combustion du phenol, du-m-cresol et del leurs ethers; par M. Marius BADOCHE., Bull. Soc. Chim. Fr., 1941, 8, 212-220. [all data]

Kudchadker S.A., 1978
Kudchadker S.A., Ideal gas thermodynamic properties of phenol and cresols, J. Phys. Chem. Ref. Data, 1978, 7, 417-423. [all data]

Evans J.C., 1960
Evans J.C., The vibrational spectra phenol and phenol-OD, Spectrochim. Acta, 1960, 16, 1382-1392. [all data]

Green J.H.S., 1961
Green J.H.S., The thermodynamic properties of organic oxygen compounds. II. Vibrational assignment and calculated thermodynamic properties of phenol, J. Chem. Soc., 1961, 2236-2241. [all data]

Sarin V.N., 1973
Sarin V.N., Thermodynamic properties in the gaseous state of certain monosubstituted benzenes, Thermochim. Acta, 1973, 6, 39-46. [all data]

Ramaswamy V., 1970
Ramaswamy V., Thermo data for n-alkyl phenols, Hydrocarbon Process., 1970, 49, 217-218. [all data]

Andon, Counsell, et al., 1963
Andon, R.J.L.; Counsell, J.F.; Herington, E.F.G.; Martin, J.F., Thermodynamic properties of organic oxygen compounds, Trans. Faraday Soc., 1963, 59, 830-835. [all data]

Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal data on organic compounds. XI. The heat capacities, entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]

Nichols and Wads, 1975
Nichols, N.; Wads, I., Thermochemistry of solutions of biochemical model compounds. 3. Some benzene derivatives in aqueous solution, J. Chem. Thermodynam., 1975, 7, 329-336. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Campbell and Campbell, 1940
Campbell, A.N.; Campbell, A.J.R., The heats of solution, heats of formation, specific heats and equilibrium diagrams of certain molecular compounds. J. Am. Chem. Soc., 1940, 62, 291-297. [all data]

Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E., Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature, Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]

Andon, Counsell, et al., 1963, 2
Andon, R.J.L.; Counsell, J.F.; Herington, E.F.G.; Martin, J.F., Thermodyn. prop. of organic oxygen compds., part 7- calorimetric study of phenol from 12 to330o K, Trans. Faraday Soc., 1963, 59, 830. [all data]

Delaunois, 1968
Delaunois, C., Effect of the Filling Rate of a Reactor on the Vapor Tension and the Temperature at the Beginning of Cracking of Phenols at High Pressures, Ann. Mines Belg., 1968, No. 1, 9-16. [all data]

Ambrose, 1963
Ambrose, D., Critical Temperatures of Some Phenols and Other Organic Compounds, Trans. Faraday Soc., 1963, 59, 1988. [all data]

Radice, 1899
Radice, G., , Ph. D. Thesis, Univ. of Geneve, 1899. [all data]

Herz and Neukirch, 1923
Herz, W.; Neukirch, E., On Knowldge of the Critical State, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Parsons, Rochester, et al., 1971
Parsons, G.H.; Rochester, C.H.; Wood, C.E.C., Effect of 4-substitution on the thermodynamics of hydration of phenol and the phenoxide anion, J. Chem. Soc., B:, 1971, 533, https://doi.org/10.1039/j29710000533 . [all data]

Chylinski, Fras, et al., 2001
Chylinski, K.; Fras, Z.; Malanowski, S.K., Vapor-Liquid Equilibrium in Phenol + 2-Ethoxyethanol at 363.15 to 383.15 K, J. Chem. Eng. Data, 2001, 46, 1, 29-33, https://doi.org/10.1021/je0001072 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Andon, Biddiscombe, et al., 1960, 2
Andon, R.J.L.; Biddiscombe, D.P.; Cox, J.D.; Handley, R.; Harrop, D.; Herington, E.F.G.; Martin, J.F., 1009. Thermodynamic properties of organic oxygen compounds. Part I. Preparation and physical properties of pure phenol, cresols, and xylenols, J. Chem. Soc., 1960, 5246, https://doi.org/10.1039/jr9600005246 . [all data]

Dykyj, 1972
Dykyj, J., Petrochemia, 1972, 12, 1, 13. [all data]

Dreisbach and Shrader, 1949
Dreisbach, R.R.; Shrader, S.A., Vapor Pressure--Temperature Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2879-2880, https://doi.org/10.1021/ie50480a054 . [all data]

Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2875-2878, https://doi.org/10.1021/ie50480a053 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Goldblum, Martin, et al., 1947
Goldblum, K.B.; Martin, R.W.; Young, R.B., Vapor Pressure Data for Phenols, Ind. Eng. Chem., 1947, 39, 11, 1474-1476, https://doi.org/10.1021/ie50455a017 . [all data]

Chickos, 1975
Chickos, James Speros, A simple equilibrium method for determining heats of sublimation, J. Chem. Educ., 1975, 52, 2, 134-39, https://doi.org/10.1021/ed052p134 . [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]

Sklyarenko, Markin, et al., 1958
Sklyarenko, S.I.; Markin, B.I.; Belyaeva, L.B., Zh. Fiz. Khim., 1958, 32, 1916. [all data]

Nitta and Seki, 1948
Nitta, I.; Seki, S., J. Chem. Soc. Jpn. Pure Chem. Sect., 1948, 69, 141. [all data]

Balson, 1947
Balson, E.W., Studies in vapour pressure measurement, Part III.?An effusion manometer sensitive to 5 «65533» 10?6 millimetres of mercury: vapour pressure of D.D.T. and other slightly volatile substances, Trans. Faraday Soc., 1947, 43, 54, https://doi.org/10.1039/tf9474300054 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Mastrangelo, 1957
Mastrangelo, S.V.R., Adiabatic calorimeter for determination of cryoscopic data, Anal. Chem., 1957, 29(5), 841-845. [all data]

Inozemtsev, Liakumovich, et al., 1972
Inozemtsev, P.P.; Liakumovich, A.G.; Gracheva, Z.D., Russ. J. Phys. Chem., 1972, 46, 6, 914. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Eykman, 1889
Eykman, J.F., Zur kryoskopischen Molekulargewichtsbestimmung, Z. Physik. Chem., 1889, 4, 497-519. [all data]

Bret-Dibat and Lichanot, 1989
Bret-Dibat, P.; Lichanot, A., Proprietes thermodynamiques des isomeres de position de benzenes disubstitues en phase condensee, Thermochim. Acta, 1989, 147, 2, 261, https://doi.org/10.1016/0040-6031(89)85181-0 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Shiner, Vorner, et al., 1986
Shiner, C.S.; Vorner, P.E.; Kass, S.R., Gas phase acidities and heats of formation of 2,4- and 2,5- cyclohexadien-1-one, the keto tautomers of phenol, J. Am. Chem. Soc., 1986, 108, 5699. [all data]

Capponi, Gut, et al., 1999
Capponi, M.; Gut, I.G.; Hellrung, B.; Persy, G.; Wirz, J., Ketonization equilibria of phenol in aqueous solution, Can. J. Chem., 1999, 77, 5-6, 605-613, https://doi.org/10.1139/v99-048 . [all data]

Angel and Ervin, 2004
Angel, L.A.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidity and O-H bond dissociation enthalpy of phenol, J. Phys. Chem. A, 2004, 108, 40, 8346-8352, https://doi.org/10.1021/jp0474529 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Richardson, Stephenson, et al., 1975
Richardson, J.H.; Stephenson, L.M.; Brauman, J.I., Photodetachment of electrons from phenoxides and thiophenoxide, J. Am. Chem. Soc., 1975, 97, 2967. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Cummings, French, et al., 1977
Cummings, J.B.; French, M.A.; Kebarle, P., Effect of charge delocalization on hydrogen bonding to negative ions and solvation of negative ions. Substituted phenols and phenoxide ions, J. Am. Chem. Soc., 1977, 99, 6999. [all data]

Kebarle, 1977
Kebarle, P., Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria, Ann. Rev. Phys. Chem., 1977, 28, 1, 445, https://doi.org/10.1146/annurev.pc.28.100177.002305 . [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Stabilities in the Gas Phase of the Hydrogen Bonded Complexes, YC6H4OH-X-, of Substituted Phenols, YC6H4OH, with the Halide Anions X-(Cl-, Br-), Can. J. Chem., 1990, 68, 11, 2070, https://doi.org/10.1139/v90-316 . [all data]

Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P., Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria, J. Am. Chem. Soc., 1971, 93, 7139. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T., The influence of substituents on cation-pi interactions. 4. Absolute binding energies of alkali metal cation - Phenol complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 42, 9718, https://doi.org/10.1021/jp0211584 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Nesterova, Pimerzin, et al., 1989
Nesterova, T.N.; Pimerzin, A.A.; Rozhnov, A.M.; Karlina, T.N., Equilibria for the isomerization of (secondary-alkyl)phenols and cyclohexylphenols, J. Chem. Thermodyn., 1989, 21, 385-395. [all data]

Nesterova, Pilyshchikov, et al., 1983
Nesterova, T.N.; Pilyshchikov, V.A.; Rozhnov, A.M., Chemical Equilibrium in the system isopropylphenols-phenol, J. Appl. Chem. USSR, 1983, 56, 1257-1261. [all data]

Dias, Salema, et al., 1981
Dias, A.R.; Salema, M.S.; Martinho Simões, J.A., J. Organometal. Chem., 1981, 222, 69. [all data]

Calhorda, Carrondo, et al., 1986
Calhorda, M.J.; Carrondo, M.A.A.F.C.T.; Dias, A.R.; Domingos, A.M.T.S.; Martinho Simões, J.A.; Teixeira, C., Organometallics, 1986, 5, 660. [all data]

Holm, 1983
Holm, T., Acta Chem. Scand. B, 1983, 37, 797. [all data]

Schock and Marks, 1988
Schock, L.E.; Marks, T.J., J. Am. Chem. Soc., 1988, 110, 7701. [all data]

Wadso, 1960
Wadso, I., Heats of hydrolysis of phenyl acetate and phenyl thiolacetate, Acta Chem. Scand., 1960, 14, 561-565. [all data]

Leal, Pires de Matos, et al., 1991
Leal, J.P.; Pires de Matos, A.; Martinho Simões, J.A., J. Organometal. Chem., 1991, 403, 1. [all data]

Pil'shchikov, Nesterova, et al., 1981
Pil'shchikov, V.A.; Nesterova, T.N.; Rozhnov, A.M., Equilibrium in the system phenol-tert-butylphenols, J. Appl. Chem. USSR, 1981, 54, 1765-1769. [all data]

Diogo, Simoni, et al., 1993
Diogo, H.P.; Simoni, J.A.; Minas da Piedade, M.E.; Dias, A.R.; Martinho Simões, J.A., J. Am. Chem. Soc., 1993, 115, 2764. [all data]

Kukui, Potolovskii, et al., 1973
Kukui, N.M.; Potolovskii, L.A.; Vasileva, V.N., Thermochemical and thermodynamic calculation of the alkylation of phenol by normal «alpha»-olefins, Khim. Tekhnol. Topl. Masel, 1973, 18, 10-13. [all data]

Verevkin, 1982
Verevkin, S.P., Study of equilibrium of tert-butylphenol dealkylation in the gas phase, Termodin. Organ. Soedin., 1982, 67-70. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References