Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

lithium iodide


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Deltafgas-91.00kJ/molReviewChase, 1998Data last reviewed in June, 1966
Quantity Value Units Method Reference Comment
gas,1 bar232.25J/mol*KReviewChase, 1998Data last reviewed in June, 1966

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 2500. - 6000.
A 37.05802
B 1.011596
C -0.082190
D 0.007009
E -0.252429
F -102.9415
G 275.3771
H -91.00200
ReferenceChase, 1998
Comment Data last reviewed in June, 1966

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Deltafliquid-258.35kJ/molReviewChase, 1998Data last reviewed in June, 1966
Quantity Value Units Method Reference Comment
liquid,1 bar98.61J/mol*KReviewChase, 1998Data last reviewed in June, 1966
Quantity Value Units Method Reference Comment
Deltafsolid-270.08kJ/molReviewChase, 1998Data last reviewed in June, 1966
Quantity Value Units Method Reference Comment
solid85.65J/mol*KReviewChase, 1998Data last reviewed in June, 1966

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 742. - 2500.
A 63.17798
B -5.685763×10-10
C 4.080517×10-10
D -8.942505×10-11
E -1.004394×10-11
F -277.1854
G 175.0669
H -258.3494
ReferenceChase, 1998
Comment Data last reviewed in June, 1966

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 742.
A 101.5068
B -192.2945
C 285.8199
D -121.6126
E -1.447109
F -298.9757
G 246.0527
H -270.0772
ReferenceChase, 1998
Comment Data last reviewed in June, 1966

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through January, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 7Li127I
StateTeomegaeomegaexeomegaeyeBealphaegammaeDebetaereTrans.nu00
Peaks in the electron energy loss spectrum at 7.3 and 9.7 eV.
Geiger and Pfeiffer, 1968
Continuous absorption above 28600 cm-1 with maximum at 33900 and 45000 cm-1.1
Berry and Klemperer, 1957; Levi, 1934
A 2           A larrow X 
Berry and Klemperer, 1957; Levi, 1934
X 1Sigma+ 0 498.16 (Z) 3.39 3 0.08 0.4431820 0.004090 4 0.0000153 1.448E-6  2.391924 5  
Klemperer and Rice, 1957; Klemperer, Norris, et al., 1960
          6  
Honig, Mandel, et al., 1954; Rusk and Gordy, 1962; Breivogel, Hebert, et al., 1965
          7  
Breivogel, Hebert, et al., 1965; Jacobson and Ramsey, 1976
          8  

Notes

1Absorption cross sections Davidovits and Brodhead, 1967. UV absorption in inert matrices Oppenheimer and Berry, 1971 shows banded structure in the region 34500-40000 cm-1 indicating the existence of a stable upper state (possibly lowest excited 0+) with omegae ~365.
2Diffuse absorption bands from 29146 to 24507 cm-1. 10
3Vibrational constants from the IR spectra Klemperer, Norris, et al., 1960.
4For constants of 6LiI see Breivogel, Hebert, et al., 1965.
5Rot.-vibr. Sp.
6Rotation spectrum
7Mol. beam rf electric reson. 11
8Mol. beam magn. reson. 12
9Close agreement between several thermochemical values [ Brewer and Brackett, 1961; mass-spectrometry Friedman, 1955; flame-photometry Bulewicz, Phillips, et al., 1961] and the spectroscopic value of Beutler and Levi, 1934.
10A broad single band appears at 28560 cm-1 in matrix absorption spectra Oppenheimer and Berry, 1971.
11Dipole moments for 6LiI; muel(v=0,1) = 7.4285, 7.5120 D Breivogel, Hebert, et al., 1965. Hfs constants Breivogel, Hebert, et al., 1965,138; see also Honig, Mandel, et al., 1954 and Kusch, 1949, Logan, Cote, et al., 1952, Kusch, 1959.
12gJ(7LiI) = (+)0.107 muN. Li NMR spectrum Kusch, 1949, Logan, Cote, et al., 1952, Kusch, 1959.
13missing note

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Geiger and Pfeiffer, 1968
Geiger, J.; Pfeiffer, H.-C., Untersuchung der Anregung innerer Elektronen von Alkalihalogenidmolekulen im Energieverlustspektrum von 25 keV-Elektronen, Z. Phys., 1968, 208, 105. [all data]

Berry and Klemperer, 1957
Berry, R.S.; Klemperer, W., Spectra of the alkali halides. III. Electronic spectra of lithium chloride, lithium bromide, and lithium iodide, J. Chem. Phys., 1957, 26, 724. [all data]

Levi, 1934
Levi, Dissertation, Berlin, 1934, 0. [all data]

Klemperer and Rice, 1957
Klemperer, W.; Rice, S.A., Infrared spectra of the alkali halides. I. Lithium halides, J. Chem. Phys., 1957, 26, 618. [all data]

Klemperer, Norris, et al., 1960
Klemperer, W.; Norris, W.G.; Buchler, A.; Emslie, A.G., Infrared spectra of lithium halide monomers, J. Chem. Phys., 1960, 33, 1534. [all data]

Honig, Mandel, et al., 1954
Honig, A.; Mandel, M.; Stitch, M.L.; Townes, C.H., Microwave spectra of the alkali halides, Phys. Rev., 1954, 96, 629. [all data]

Rusk and Gordy, 1962
Rusk, J.R.; Gordy, W., Millimeter wave molecular beam spectroscopy: alkali bromides and iodides, Phys. Rev., 1962, 127, 817. [all data]

Breivogel, Hebert, et al., 1965
Breivogel, F.W., Jr.; Hebert, A.J.; Street, K., Jr., Radio-frequency and microwave spectra of 6Li127I by the molecular-beam electric-resonance method, J. Chem. Phys., 1965, 42, 1555. [all data]

Jacobson and Ramsey, 1976
Jacobson, A.R.; Ramsey, N.F., The hyperfine structure of 7Lil by molecular beam techniques, J. Chem. Phys., 1976, 65, 1211. [all data]

Davidovits and Brodhead, 1967
Davidovits, P.; Brodhead, D.C., Ultraviolet absorption cross sections for the alkali halide vapors, J. Chem. Phys., 1967, 46, 2968. [all data]

Oppenheimer and Berry, 1971
Oppenheimer, M.; Berry, R.S., Ultraviolet spectra of alkali halides in inert matrices, J. Chem. Phys., 1971, 54, 5058. [all data]

Brewer and Brackett, 1961
Brewer, L.; Brackett, E., The dissociation energies of gaseous alkali halides, Chem. Rev., 1961, 61, 425. [all data]

Friedman, 1955
Friedman, L., Mass spectrum of lithium iodide, J. Chem. Phys., 1955, 23, 477. [all data]

Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M., Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals, Trans. Faraday Soc., 1961, 57, 921. [all data]

Beutler and Levi, 1934
Beutler, H.; Levi, H., Berechnung der dissoziationswarmen von gasformigem KC, KBr, KJ, NaCl, NaBr, NaJ und LiJ in die atome aus thermischen und optischen daten. (Anbang: die verdampfungswarme des kaliums und des lithiums), Z. Phys. Chem. Abt. B, 1934, 24, 263. [all data]

Kusch, 1949
Kusch, P., On the nuclear electric quadrupole moment of Li6, Phys. Rev., 1949, 75, 887. [all data]

Logan, Cote, et al., 1952
Logan, R.A.; Cote, R.E.; Kusch, P., The sign of the quadrupole interaction energy in diatomic molecules, Phys. Rev., 1952, 86, 280. [all data]

Kusch, 1959
Kusch, P., Nuclear reorientation spectrum of Li7 in the gaseous monomers and dimers of the lithium halides, J. Chem. Phys., 1959, 30, 52. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, References