Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

NOTICE: Due to scheduled maintenance at our Gaithersburg campus, this site will not be available from 5:00 pm EDT (21:00 UTC) on Friday October 25 until 5:00 pm (21:00 UTC) on Sunday October 27. We apologize for any inconvenience this outage may cause.

Diphenylmethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Deltafgas39.4 ± 0.53kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Deltafgas38.79 ± 0.55kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Deltafgas39.39 ± 0.38kcal/molCcbSteele, Chirico, et al., 1995ALS
Deltafgas37.43kcal/molN/AParks and Mosley, 1950Value computed using «DELTA»fHliquid° value of 88.9 kj/mol from Parks and Mosley, 1950 and «DELTA»vapH° value of 67.7 kj/mol from Steele, Chirico, et al., 1995.; DRB
Quantity Value Units Method Reference Comment
gas104.cal/mol*KN/AMarcus Y., 1986This value calculated from published spectroscopic and structural data is in close agreement with estimations by a method of increments (440-451 J/mol*K [85MAR/LOE, Dorofeeva O.V., 1997]). Value obtained from calorimetric data (508.5 J/mol*K [85MAR/LOE]) authors do not regard as reliable. Results of statistical thermodynamics calculation [ Puranik P.G., 1962] are likely to be erroneous (S(300 K)=319 J/mol*K).; GT

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Deltafliquid23.2 ± 0.53kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Deltafliquid23.2 ± 0.33kcal/molCcbSteele, Chirico, et al., 1995ALS
Deltafliquid21.25kcal/molCcbParks and Mosley, 1950see Parks, West, et al., 1946; ALS
Quantity Value Units Method Reference Comment
Deltacliquid-1655.6 ± 0.33kcal/molCcbSteele, Chirico, et al., 1995Corresponding «DELTA»fliquid = 23.1 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-1653.83 ± 0.32kcal/molCcbParks and Mosley, 1950see Parks, West, et al., 1946; Corresponding «DELTA»fliquid = 21.28 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
Deltafsolid17.9 ± 0.53kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Deltafsolid27.3kcal/molCcbSchmidlin, 1906ALS
Quantity Value Units Method Reference Comment
Deltacsolid-1595.kcal/molCcbSerijan and Wise, 1951Corresponding «DELTA»fsolid = -38. kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacsolid-1656.6kcal/molCcbWise, Serijan, et al., 1951Corresponding «DELTA»fsolid = 24.0 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacsolid-1656.20 ± 0.20kcal/molCcbCoops, Mulder, et al., 1946Reanalyzed by Cox and Pilcher, 1970, Original value = -1655.6 ± 0.2 kcal/mol; Corresponding «DELTA»fsolid = 23.65 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacsolid-1659.9kcal/molCcbSchmidlin, 1906Corresponding «DELTA»fsolid = 27.3 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar57.19cal/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 77.86 J/mol*K.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
63.60303.Duff and Everett, 1956T = 303 to 353 K.; DH
66.90300.Kurbatov, 1950T = 29 to 254°C.; DH
55.81298.5Smith and Andrews, 1931T = 102 to 322 K. Value is unsmoothed experimental datum.; DH
53.49282.5Huffman, Parks, et al., 1930T = 89 to 312 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny, director
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil535. ± 4.KAVGN/AAverage of 51 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus299. ± 2.KAVGN/AAverage of 83 out of 85 values; Individual data points
Quantity Value Units Method Reference Comment
Tc780. ± 60.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Pc27. ± 3.atmN/ATsonopoulos and Ambrose, 1995 
Pc26.75atmN/AWieczorek and Kobayashi, 1980Uncertainty assigned by TRC = 2.96 atm; TRC
Pc59.0000atmN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 3.0000 atm; TRC
Pc28.2000atmN/AGuye and Mallet, 1902Uncertainty assigned by TRC = 0.99995 atm; TRC
Pc28.2000atmN/AGuye and Mallet, 1902Uncertainty assigned by TRC = 0.99995 atm; TRC
Quantity Value Units Method Reference Comment
Vc0.563l/molN/ATsonopoulos and Ambrose, 1995 
Quantity Value Units Method Reference Comment
rhoc1.8 ± 0.3mol/lN/ATsonopoulos and Ambrose, 1995 
rhoc1.780mol/lN/AStephenson, 1992Uncertainty assigned by TRC = 0.12 mol/l; TRC
Quantity Value Units Method Reference Comment
Deltavap16. ± 2.kcal/molAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Deltasub20.8 ± 0.2kcal/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Deltasub20.9 ± 0.2kcal/molN/AVerevkin, 1999AC

Enthalpy of vaporization

DeltavapH (kcal/mol) Temperature (K) Method Reference Comment
15.3 ± 0.02340.IP,EBChirico and Steele, 2005Based on data from 330. - 588. K.; AC
14.6 ± 0.02380.IP,EBChirico and Steele, 2005Based on data from 330. - 588. K.; AC
13.8 ± 0.02420.IP,EBChirico and Steele, 2005Based on data from 330. - 588. K.; AC
13.1 ± 0.02460.IP,EBChirico and Steele, 2005Based on data from 330. - 588. K.; AC
12.4 ± 0.05500.IP,EBChirico and Steele, 2005Based on data from 330. - 588. K.; AC
11.7 ± 0.07540.IP,EBChirico and Steele, 2005Based on data from 330. - 588. K.; AC
15.9 ± 0.1323.GSVerevkin, 1999Based on data from 303. - 343. K.; AC
14.8368.N/ASohda, Okazaki, et al., 1990Based on data from 353. - 433. K.; AC
15.2363.N/ASasse, N'guimbi, et al., 1989Based on data from 303. - 402. K.; AC
17.3310.AStephenson and Malanowski, 1987Based on data from 295. - 383. K.; AC
13.6438.AStephenson and Malanowski, 1987Based on data from 423. - 583. K.; AC
13.3445.N/AWieczorek and Kobayashi, 1981AC
11.7535.N/AWieczorek and Kobayashi, 1981AC
13.0505.N/ACrafts, 1915Based on data from 490. - 555. K. See also Boublik, Fried, et al., 1984.; AC

Enthalpy of sublimation

DeltasubH (kcal/mol) Temperature (K) Method Reference Comment
21.2 ± 0.2284.GSVerevkin, 1999Based on data from 273. - 295. K.; AC
17.1286.EMSasse, N'guimbi, et al., 1989Based on data from 273. - 298. K.; AC
19.9 ± 0.79286.HSAChickos, Annunziata, et al., 1986Based on data from 276. - 295. K.; AC
19.71 ± 0.15299.8VAihara, 1959crystal phase; ALS
15.3278. - 299.N/ABloink, Pausacker, et al., 1951See also Jones, 1960.; AC
17.2 ± 0.2297.N/AWolf and Weghofer, 1938AC
17.2 ± 0.2297.VWolf and Weghofer, 1938, 2ALS

Enthalpy of fusion

DeltafusH (kcal/mol) Temperature (K) Method Reference Comment
4.543298.4N/AChirico and Steele, 2005AC
4.441298.3ACDomalski and Hearing, 1996AC
4.4381298.3N/AHuffman, Parks, et al., 1930DH
4.5531299.4N/AEykman, 1889DH

Entropy of fusion

DeltafusS (cal/mol*K) Temperature (K) Reference Comment
14.90298.3Domalski and Hearing, 1996CAL
14.88298.3Huffman, Parks, et al., 1930DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C13H11- + Hydrogen cation = Diphenylmethane

By formula: C13H11- + H+ = C13H12

Quantity Value Units Method Reference Comment
Deltar363.6 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Deltar361.3 ± 2.3kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Deltar358.2 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Deltar355.9 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B

Chlorine anion + Diphenylmethane = (Chlorine anion bullet Diphenylmethane)

By formula: Cl- + C13H12 = (Cl- bullet C13H12)

Quantity Value Units Method Reference Comment
Deltar7.40kcal/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

DeltarG° (kcal/mol) T (K) Method Reference Comment
7.4300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Chemical Concepts
NIST MS number 152251

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Steele, Chirico, et al., 1995
Steele, W.V.; Chirico, R.D.; Smith, N.K., The standard enthalpies of formation of 2-methylbiphenyl and diphenylmethane, J. Chem. Thermodyn., 1995, 27, 671-678. [all data]

Parks and Mosley, 1950
Parks, G.S.; Mosley, J.R., Redetermination of the heat of combustion of diphenylmethane, J. Am. Chem. Soc., 1950, 72, 1850. [all data]

Marcus Y., 1986
Marcus Y., Entropies of tetrahedral M-phenyl species, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 993-1006. [all data]

Dorofeeva O.V., 1997
Dorofeeva O.V., Unpublished results. Thermocenter of Russian Academy of Science, Moscow, 1997. [all data]

Puranik P.G., 1962
Puranik P.G., Vibrational spectra, potential constants, and thermodynamic properties of diphenylmethane, Proc. Indian Acad. Sci., 1962, A56, 233-238. [all data]

Parks, West, et al., 1946
Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A., Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols, J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]

Schmidlin, 1906
Schmidlin, M.J., Recherches chimiques et thermochimiques sur la constitution des rosanilines, Ann. Chim. Phys., 1906, 1, 195-256. [all data]

Serijan and Wise, 1951
Serijan, K.T.; Wise, P.H., Dicyclic hydrocarbons. III. Diphenyl- and dicyclohexylalkanes through C15, J. Am. Chem. Soc., 1951, 73, 4766-4769. [all data]

Wise, Serijan, et al., 1951
Wise, C.H.; Serijan, K.T.; Goodman, I.A., NACA Technical Report 1003, NACA Technical Report 1003, 1951, 1-10. [all data]

Coops, Mulder, et al., 1946
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J., The heats of combustion of a number of hydrocarbons, Rec. Trav. Chim. Pays/Bas, 1946, 65, 128. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C., Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]

Duff and Everett, 1956
Duff, G.M.; Everett, D.H., The heat capacity of the system benzene + diphenylmethane, Trans. Faraday Soc., 1956, 52, 753-763. [all data]

Kurbatov, 1950
Kurbatov, V.Ya., Specific heats of liquids. III. Specific heat of hydrocarbons with several noncondensed rings, Zhur. Obshch. Khim., 1950, 20, 1139-1144. [all data]

Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H., Thermal energy studies. I. Phenyl derivatives of methane, ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]

Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons, J. Chem. Eng. Data, 1995, 40, 547-558. [all data]

Wieczorek and Kobayashi, 1980
Wieczorek, S.A.; Kobayashi, R., Vapor pressure measurements of diphenylmethane, thianaphthene, and bicyclohexyl at elevated temperatures, J. Chem. Eng. Data, 1980, 25, 302. [all data]

Glaser and Ruland, 1957
Glaser, F.; Ruland, H., Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen, Chem. Ing. Techn., 1957, 29, 772. [all data]

Guye and Mallet, 1902
Guye, P.A.; Mallet, E., Measurement of Critical Constants, Arch. Sci. Phys. Nat., 1902, 13, 274-296. [all data]

Stephenson, 1992
Stephenson, R.M., Mutual solubilities: water-ketones, water-ethers, and water-gasoline- alcohols, J. Chem. Eng. Data, 1992, 37, 80-95. [all data]

Verevkin, 1999
Verevkin, Sergey P., Thermochemical Properties of Diphenylalkanes, J. Chem. Eng. Data, 1999, 44, 2, 175-179, https://doi.org/10.1021/je980200e . [all data]

Chirico and Steele, 2005
Chirico, Robert D.; Steele, William V., Thermodynamic Properties of Diphenylmethane «8224», J. Chem. Eng. Data, 2005, 50, 3, 1052-1059, https://doi.org/10.1021/je050034s . [all data]

Sohda, Okazaki, et al., 1990
Sohda, M.; Okazaki, M.; Iwai, Y.; Arai, Y.; Sakoguchi, A.; Ueoka, R.; Kato, Y., Vapor pressures of cyclohexylbenzene and diphenylmethane, The Journal of Chemical Thermodynamics, 1990, 22, 6, 607-608, https://doi.org/10.1016/0021-9614(90)90152-G . [all data]

Sasse, N'guimbi, et al., 1989
Sasse, K.; N'guimbi, J.; Jose, J.; Merlin, J.C., Tension de vapeur d'hydrocarbures polyaromatiques dans le domaine 10-3--10 Torr, Thermochimica Acta, 1989, 146, 53-61, https://doi.org/10.1016/0040-6031(89)87075-3 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Wieczorek and Kobayashi, 1981
Wieczorek, Stefan A.; Kobayashi, Riki, Vapor-pressure measurements of 1-methylnaphthalene, 2-methylnaphthalene, and 9,10-dihydrophenanthrene at elevated temperatures, J. Chem. Eng. Data, 1981, 26, 1, 8-11, https://doi.org/10.1021/je00023a005 . [all data]

Crafts, 1915
Crafts, J.M., J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 105. [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Chickos, Annunziata, et al., 1986
Chickos, J.S.; Annunziata, R.; Ladon, L.H.; Hyman, A.S.; Liebman, J.F., Estimating heats of sublimation of hydrocarbons. A semiempirical approach, J. Org. Chem., 1986, 51, 4311-4314. [all data]

Aihara, 1959
Aihara, A., Estimation of the energy of hydrogen bonds formed in crystals. I. Sublimation pressures of some organic molecular crystals and the additivity of lattice energy, Bull. Chem. Soc. Jpn., 1959, 32, 1242. [all data]

Bloink, Pausacker, et al., 1951
Bloink, G.J.; Pausacker, K.H.; Jones, A.S.; Lee, W.A.; Peacocke, A.R.; Bright, Norman F.H.; Moffatt, J.S.; Wilkinson, J.H., Notes, J. Chem. Soc., 1951, 622, https://doi.org/10.1039/jr9510000622 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.Z., Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]

Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H., Uber sublimationswarmen, Z. Phys. Chem., 1938, 39, 194-208. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Eykman, 1889
Eykman, J.F., Zur kryoskopischen Molekulargewichtsbestimmung, Z. Physik. Chem., 1889, 4, 497-519. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References