Nitric oxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas21.58kcal/molReviewChase, 1998Data last reviewed in June, 1963
Quantity Value Units Method Reference Comment
gas,1 bar50.373cal/mol*KReviewChase, 1998Data last reviewed in June, 1963

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 1200.1200. - 6000.
A 5.6966818.602221
B 3.0087910.228769
C -0.272230-0.035380
D -0.3579010.002384
E 0.051194-0.717994
F 19.9230017.47320
G 56.6734958.83411
H 21.5801021.58010
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1963 Data last reviewed in June, 1963

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: William E. Acree, Jr., James S. Chickos

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference
3.30212.CJohnston and Giauque, 1929

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Nitric oxide anion + Nitric oxide = (Nitric oxide anion • Nitric oxide)

By formula: NO- + NO = (NO- • NO)

Quantity Value Units Method Reference Comment
Δr13.8kcal/molPILinn, Ono, et al., 1981gas phase; M
Δr13.6kcal/molPINg, Tiedemann, et al., 1977gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.0296.SAMSPuckett and Teague, 1971gas phase; M

(Nitric oxide anion • Nitric oxide) + Nitric oxide = (Nitric oxide anion • 2Nitric oxide)

By formula: (NO- • NO) + NO = (NO- • 2NO)

Quantity Value Units Method Reference Comment
Δr7.4kcal/molPILinn, Ono, et al., 1981gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
1.9296.SAMSPuckett and Teague, 1971gas phase; M

(Nickel ion (1+) • Nitric oxide) + Nitric oxide = (Nickel ion (1+) • 2Nitric oxide)

By formula: (Ni+ • NO) + NO = (Ni+ • 2NO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
27.4 (+1.2,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

Nickel ion (1+) + Nitric oxide = (Nickel ion (1+) • Nitric oxide)

By formula: Ni+ + NO = (Ni+ • NO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
29.3 (+1.6,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

(Nitric oxide anion • 2Nitric oxide) + Nitric oxide = (Nitric oxide anion • 3Nitric oxide)

By formula: (NO- • 2NO) + NO = (NO- • 3NO)

Quantity Value Units Method Reference Comment
Δr3.7kcal/molPILinn, Ono, et al., 1981gas phase; M

(Nitric oxide anion • 3Nitric oxide) + Nitric oxide = (Nitric oxide anion • 4Nitric oxide)

By formula: (NO- • 3NO) + NO = (NO- • 4NO)

Quantity Value Units Method Reference Comment
Δr3.5kcal/molPILinn, Ono, et al., 1981gas phase; M

(Nitric oxide anion • 4Nitric oxide) + Nitric oxide = (Nitric oxide anion • 5Nitric oxide)

By formula: (NO- • 4NO) + NO = (NO- • 5NO)

Quantity Value Units Method Reference Comment
Δr2.3kcal/molPILinn, Ono, et al., 1981gas phase; M

Ethyl-nitrite- = Nitric oxide + Ethoxy radical

By formula: C2H5NO2 = NO + C2H5O

Quantity Value Units Method Reference Comment
Δr37.7kcal/molKinRebbert and Laidler, 1952gas phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00191400.LN/A 
0.00191700.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
0.0019 CN/A 
0.00191500.LN/A 
0.0014 MN/A 
7.9×10-73800.LN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to NO+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.2642 ± 0.00002eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)127.1kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity120.8kcal/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
125.75 ± 0.30Kuo, Zhang, et al., 1997T = 0K; Photoionization of HNO yields DHf(HNO+) from which PA(NO) is calculated at 0 K and 298K.; MM

Ionization energy determinations

IE (eV) Method Reference Comment
9.26438 ± 0.00005TEReiser, Habenicht, et al., 1988LL
9.26405 ± 0.00006TESander, Chewter, et al., 1987LBLHLM
9.26383PIMuller-Dethlefs, Sander, et al., 1984LBLHLM
9.2644SSeaver, Chupka, et al., 1983LBLHLM
9.2643 ± 0.0002PIEbata, Anezaki, et al., 1983LBLHLM
9.23PEFantoni, Giardini-Guidoni, et al., 1982LBLHLM
9.2 ± 0.1EIKim, Stephan, et al., 1981LLK
9.54PEKimura, Katsumata, et al., 1981LLK
9.26436EVALHuber and Herzberg, 1979LLK
9.26436 ± 0.00006SMiescher, 1976LLK
9.27PENatalis, 1973LLK
9.262 ± 0.003PEEdqvist, Asbrink, et al., 1971LLK
9.27PECollin, Delwiche, et al., 1971LLK
9.25 ± 0.02EIHildenbrand, 1970RDSH
9.25 ± 0.15EICristy and Mamantov, 1970RDSH
9.267TEPeatman, Borne, et al., 1969RDSH
9.2639 ± 0.0006SJungen and Miescher, 1969RDSH
9.27 ± 0.05EICantone, Emma, et al., 1968RDSH
9.28 ± 0.03EIHierl and Franklin, 1967RDSH
9.266 ± 0.008SDressler and Miescher, 1965RDSH
9.250 ± 0.005PINicholson, 1963RDSH
9.267 ± 0.005SHuber, 1961RDSH
9.25 ± 0.02PIWatanabe, 1954RDSH
9.26PEKibel and Nyberg, 1979Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
N+19.56O-PIErman, Karawajczyk, et al., 1995LL
N+21.02OPIErman, Karawajczyk, et al., 1995LL
N+19.56 ± 0.03O-PIOertel, Schenk, et al., 1980LLK
N+19.6 ± 0.2O-EILocht and Momigny, 1971LLK
N+19.94 ± 0.14O-EIHierl and Franklin, 1967RDSH
N+34.1 ± 0.7O+EIAppell, Durup, et al., 1966RDSH
N+19.55 ± 0.04O-EICloutier and Schiff, 1959RDSH
N+21.11 ± 0.04OEICloutier and Schiff, 1959RDSH
N4+21.78 ± 0.11OEIHierl and Franklin, 1967RDSH
O+20.12NPIErman, Karawajczyk, et al., 1995LL
O+20.1 ± 0.3NEIDoong and Bizot, 1973LLK
O+20.46 ± 0.10NEIHierl and Franklin, 1967RDSH
O+20.11 ± 0.03NEICloutier and Schiff, 1959RDSH

Anion protonation reactions

Nitric oxide anion + Hydrogen cation = Nitrosyl hydride

By formula: NO- + H+ = HNO

Quantity Value Units Method Reference Comment
Δr361.27 ± 0.15kcal/molD-EATravers, Cowles, et al., 1989gas phase; ground state triplet anion; B
Quantity Value Units Method Reference Comment
Δr354.68 ± 0.34kcal/molH-TSTravers, Cowles, et al., 1989gas phase; ground state triplet anion; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Nitric oxide anion + Nitric oxide = (Nitric oxide anion • Nitric oxide)

By formula: NO- + NO = (NO- • NO)

Quantity Value Units Method Reference Comment
Δr13.8kcal/molPILinn, Ono, et al., 1981gas phase
Δr13.6kcal/molPINg, Tiedemann, et al., 1977gas phase

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.0296.SAMSPuckett and Teague, 1971gas phase

(Nitric oxide anion • Nitric oxide) + Nitric oxide = (Nitric oxide anion • 2Nitric oxide)

By formula: (NO- • NO) + NO = (NO- • 2NO)

Quantity Value Units Method Reference Comment
Δr7.4kcal/molPILinn, Ono, et al., 1981gas phase

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
1.9296.SAMSPuckett and Teague, 1971gas phase

(Nitric oxide anion • 2Nitric oxide) + Nitric oxide = (Nitric oxide anion • 3Nitric oxide)

By formula: (NO- • 2NO) + NO = (NO- • 3NO)

Quantity Value Units Method Reference Comment
Δr3.7kcal/molPILinn, Ono, et al., 1981gas phase

(Nitric oxide anion • 3Nitric oxide) + Nitric oxide = (Nitric oxide anion • 4Nitric oxide)

By formula: (NO- • 3NO) + NO = (NO- • 4NO)

Quantity Value Units Method Reference Comment
Δr3.5kcal/molPILinn, Ono, et al., 1981gas phase

(Nitric oxide anion • 4Nitric oxide) + Nitric oxide = (Nitric oxide anion • 5Nitric oxide)

By formula: (NO- • 4NO) + NO = (NO- • 5NO)

Quantity Value Units Method Reference Comment
Δr2.3kcal/molPILinn, Ono, et al., 1981gas phase

Nickel ion (1+) + Nitric oxide = (Nickel ion (1+) • Nitric oxide)

By formula: Ni+ + NO = (Ni+ • NO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
29.3 (+1.6,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID

(Nickel ion (1+) • Nitric oxide) + Nitric oxide = (Nickel ion (1+) • 2Nitric oxide)

By formula: (Ni+ • NO) + NO = (Ni+ • 2NO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
27.4 (+1.2,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Coblentz Society, Inc.

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View scan of original (hardcopy) spectrum.

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner COBLENTZ SOCIETY
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin WYANDOTTE CHEMICALS CORP., WYANDOTTE, MICHIGAN, USA
Source reference COBLENTZ NO. 1000
Date 1960
State GAS; $$ MATHESON CO. 99% PURE
Instrument Not specified, most likely a prism, grating, or hybrid spectrometer.
Path length 500 CM
Resolution 4
Sampling procedure TRANSMISSION
Data processing DIGITIZED BY NIST FROM HARD COPY

This IR spectrum is from the Coblentz Society's evaluated infrared reference spectra collection.


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 31

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through March, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 14N16O
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
For a detailed discussion of the electronic spectrum with particular emphasis on Rydberg ~ Rydberg and Rydberg ~ non-Rydberg interactions see Miescher and Huber, 1976; this review contains references to spectra of four isotopes as well as a short summary of theoretical calculations.
(2Σ-,2Δ,2Σ+) 2Broad unresolved peak in the oxygen K shell electron energy loss spectrum at 532.7 eV. 1
Wight and Brion, 1974
Rydberg states converging to the nitrogen K edge at 410.2 (3Π) and 411.6 (1Π) eV, observed in X-ray absorption and electron energy loss spectra at 406.3, 407.3, 408.6 eV, ...
Morioka, Nakamura, et al., 1974; Wight and Brion, 1974
(2Σ-) 4Two very weak bands in the X-ray absorption spectrum at 402.3 and 403.9 eV. 3
Morioka, Nakamura, et al., 1974
(2Δ,2Σ+,2Σ-) 5Two very weak bands in the X-ray absorption spectrum at 402.3 and 403.9 eV. 3
Morioka, Nakamura, et al., 1974
(2Σ-,2Δ,2Σ+) 7Strong unresolved peak in X-ray absorption and electron energy loss spectra at 399.8 eV.6
Morioka, Nakamura, et al., 1974; Wight and Brion, 1974
Narayana 9Narayana and Price's absorption Rydberg series converging to c 3Π of NO+:
4σ5σ242π ndλ ν = 175220 - R/(n+0.05)2, n = 3...7. All bands diffuse.8
missing citation; Sasanuma, Morioka, et al., 1974
4σ5σ242π npλ ν = 175220 - R/(n-0.70)2, n = 3...6. All bands diffuse.8
missing citation; Sasanuma, Morioka, et al., 1974
Fragments of an additional series Sasanuma, Morioka, et al., 1974. Additional cross sections 700 - 180 Å (143000 - 556000 cm-1).
Gardner, Lynch, et al., 1973; Lee, Carlson, et al., 1973
Tanaka 11Tanaka's absorption Rydberg series converging to A 1Π(v=0) and b 3Π(v=0) of NP+:
5σ1π42π npλ ν ≈ 147805 - R/(n-0.78)2; γ series, n=3...11.10 Also fragments of weak series with v'=1.
Tanaka, 1942; missing citation; Edqvist, Lindholm, et al., 1970
5σ1π42π npλ ν ≈ 133570 - R/(n-0.70)2; β series, n=3...15.10 Also fragments of weak series with v'=1.
Tanaka, 1942; missing citation; Edqvist, Lindholm, et al., 1970
32π nsσ Rydberg series converging to a 3Σ+, w 3Δ, b 3Σ-, A 1Σ-, W 1Δ of NO+. Only the first two or three members of each absorption series have been identified; long upper state progressions. Tables of absorption features 950 - 650 Å (105000 - 154000 cm-1) Tanaka, 1942, Huber, 1961*, Metzger, Cook, et al., 1967*. Absorption coefficients, photoionization and photodissociation yields Reese and Rosenstock, 1966, Metzger, Cook, et al., 1967, Watanabe, Matsunaga, et al., 1967, Bahr, Blake, et al., 1972, Hertz, Jochims, et al., 1974.
Edqvist, Lindholm, et al., 1970
The band structure of the absorption spectrum from 80000 to 105000 cm-1 has not yet been analyzed. Absorption coefficients, photoionization efficiency curves Nicholson, 1963, Reese and Rosenstock, 1966, Watanabe, Matsunaga, et al., 1967; the data of Watanabe, Matsunaga, et al., 1967 are conveiently plotted in Figure 6 of Gardner and Samson, 1973 and Figure 4 of Kleimenov, Chizhov, et al., 1972. Autoionization processes have been studied by photoelectron spectroscopy Collin, Delwiche, et al., 1971, Gardner and Samson, 1973, Caprace, Delwiche, et al., 1976; partial cross-sections for the formation of vibrationally excited NO+ Kleimenov, Chizhov, et al., 1972.
Atlas of the absorption spectrum 1420 - 1250 Å (70400 - 80000 cm-1) Miescher and Alberti, 1976; for a photographic reproduction of the spectrum at longer wavelengths (1920 - 1400 Å) see Lagerqvist and Miescher, 1958. A useful quantitative low-resolution plot of the absorption from 2300 to 1100 Å may be found in Figure 2.1 of Miescher and Huber, 1976, adapted from Marmo, 1953. Absorption coefficients, photoionization efficiency curves Watanabe, Marmo, et al., 1953, Watanabe, Matsunaga, et al., 1967, Killgoar, Leroi, et al., 1973, and Ng, Mahan, et al., 1976 whose supersonic molecular beam technique made it possible to resolve the autoionization strucutre superimposed on the first four vibrational steps due to direct ionization.
Rydberg series converging to v=0...4 of X 1Σ+ of NO+ and fragments of series with v'=5:
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
nf series 12           nf ← X 
missing citation; missing citation
ndδ series 13           ndδ ← X 
missing citation; Miescher and Huber, 1976; missing citation
npπ,σ series 14           npπ,σ ← X 
missing citation; Miescher and Huber, 1976; missing citation
nsσ series 15           nsσ ← X 
missing citation; Miescher and Huber, 1976; missing citation
Several unnassigned non-Rydberg levels, mixed with Rydberg levels, near the dissociation limit 2D + 3P at 71627 cm-1.
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
6f 71427 2376 H 16.2        6f ← X 71543
Miescher, 1966; missing citation
71427 2376 H 16.2        6f ← X 71662.6 H
Miescher, 1966; missing citation
6dδ (71342) (2397) H (23)  [1.86]      6dδ ← X V 71467
Miescher, 1966; missing citation; Miescher, 1976
(71342) (2397) H (23)  [1.86]      6dδ ← X V 71586 16 Z
Miescher, 1966; missing citation; Miescher, 1976
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Z 2Σ+ 7sσ 71224 2377 H 16.4  [1.938]      Z ← X V 71340
Miescher, 1966; missing citation
71224 2377 H 16.4  [1.938]      Z ← X V 71460 16 Z
Miescher, 1966; missing citation
Y 2Σ+ 6pσ 70614 2370 15.0  [2.11] 17      Y ← X V 70728
Dressler and Miescher, 1965; Miescher, 1966; missing citation
            70847 18 Z
Dressler and Miescher, 1965; Miescher, 1966; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
W 2Π 6pπ 70512 2375 15.6 19        W ← X 70627
Dressler and Miescher, 1965; Miescher, 1966; missing citation
            70747
Dressler and Miescher, 1965; Miescher, 1966; missing citation
5f 70079 2377 H 16.5  [1.988] 20      5f ← X 70195
Dressler and Miescher, 1965; Miescher, 1966; missing citation
            70315 21
Dressler and Miescher, 1965; Miescher, 1966; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
U 2Δ5dδ (69977) 2371 16.4 22        U ← X (70090)
Miescher, 1966; missing citation; Miescher, 1976
            (70210)
Miescher, 1966; missing citation; Miescher, 1976
T 2Σ+6sσ (69728) 2372 15.7 23        T ← X V (69841)
Miescher, 1966; missing citation
            (69961)
Miescher, 1966; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
R 2Σ+5pσ (68598)    [2.04] 24 25      R ← X V 68710.9
Dressler and Miescher, 1965; missing citation
            68830.7 18 Z
Dressler and Miescher, 1965; missing citation
Q 2Π5pπ 26           Q ← X 68526
Dressler and Miescher, 1965; missing citation
Q 2Π5pπ            68646
Dressler and Miescher, 1965; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
O' 2Π 4dπ (67762) 27 (2371) (16)  [2.022] 28      O,O' → D 14702.2
Huber, 1964; missing citation
            14697.9
Huber, 1964; missing citation
O 2Σ+ 4dσ (67757) (2371) (16)  [1.990] 28      O,O' → C 15623
Huber, 1964; missing citation
            15619
Huber, 1964; missing citation
           O,O' ← X 67874.8
Miescher, 1966; missing citation
           O,O' ← X 67870.5
Miescher, 1966; missing citation
           O,O' ← X 67994.5 18 Z
Miescher, 1966; missing citation
           O,O' ← X 67990.3 18 Z
Miescher, 1966; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
4f 67596 2381 H 18.5  [1.988] 20     [1.0657] 4f ← X 67713
Miescher, 1966; missing citation
            67833 21
Miescher, 1966; missing citation
N 2Δ4dδ 67374 2375 29 15 29  1.969 29 0.026 29     N → C 30 15238 29
Huber, 1964; missing citation
           N ↔ X V 67489
Dressler and Miescher, 1965; missing citation; missing citation
           N ↔ X V 67609 29
Dressler and Miescher, 1965; missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
S 2Σ+5sσ 66900 2378 Z 16.5  1.980 0.020     S ← X V 67016
Lagerqvist and Miescher, 1962; Dressler and Miescher, 1965; Lagerqvist and Miescher, 1966
            67136 18 Z
Lagerqvist and Miescher, 1962; Dressler and Miescher, 1965; Lagerqvist and Miescher, 1966
M 2Σ+4pσ 64437 2352 Z 19.5  2.022 31 0.018     M ← X V 64540
Barrow and Miescher, 1957; Lagerqvist and Miescher, 1962; Dressler and Miescher, 1965; missing citation; missing citation
           M ← X V 64660 18 Z
Barrow and Miescher, 1957; Lagerqvist and Miescher, 1962; Dressler and Miescher, 1965; missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
K 2Π4pπ 34     [1.895] 32 33      K ← X V 64167
Lagerqvist and Miescher, 1962; Dressler and Miescher, 1965; missing citation
K 2Π4pπ     [1.895] 32 33      K ← X V 64287 18 35 Z
Lagerqvist and Miescher, 1962; Dressler and Miescher, 1965; missing citation
I 2Σ+ (63500) 36          I ← X R 
Dressler and Miescher, 1965; Miescher, 1976
G 2Σ- 62913.0 1085.54 Z 11.083 37 -0.1439 1.2523 38 0.0204    1.3427 G ← X 39 R 62384.7
missing citation; missing citation; Miescher, 1976
            62504.4 40 Z
missing citation; missing citation; Miescher, 1976
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
L 2Πi (62500) 41 42          L ← X 
Dressler and Miescher, 1965; missing citation
H' 2Π 3dπ 62485.4 43 2371.3 Z 16.17  2.015 44 0.021    1.0585 H,H → D 45 9426.0
Huber, Huber, et al., 1963; missing citation
            9414.2
Huber, Huber, et al., 1963; missing citation
H 2Σ+ 3dσ 62473.4 [2339.4] Z   2.003 44 0.018    1.0617 H,H' → C 45 10348
Huber, Huber, et al., 1963; Huber, 1964; missing citation
            10336
Huber, Huber, et al., 1963; Huber, 1964; missing citation
           H,H' → A 45 18518.2
Huber, Huber, et al., 1963; missing citation
           H,H' → A 45 18506.4
Huber, Huber, et al., 1963; missing citation
           H,H' ← X 46 62598.6
Huber and Miescher, 1963; Miescher, 1966; missing citation
            62586.8
Huber and Miescher, 1963; Miescher, 1966; missing citation
            62718.4 40 Z
Huber and Miescher, 1963; Miescher, 1966; missing citation
            62706.6 40 Z
Huber and Miescher, 1963; Miescher, 1966; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F 2Δ3dδ 61800 2394 47 20 47  1.982 47 0.023 47    1.067 F → C 48 45 9670 47
Huber, 1964; missing citation
           F ↔ X 46 V 61924
Lagerqvist and Miescher, 1962; Dressler and Miescher, 1965; missing citation; missing citation
           F ↔ X 46 V 62044 49
Lagerqvist and Miescher, 1962; Dressler and Miescher, 1965; missing citation; missing citation
E 2Σ+4sσ 60628.8 2375.3 Z 16.43  1.9863 50 0.182  5.6E-6   E → D 45 51 7571.5
Feast, 1950; Heath, 1959
           E → A 45 16663.63 Z
missing citation; missing citation
           E ← X 52 V 60744.1
Tanaka, Seya, et al., 1951; Ueda, 1955; missing citation; Dressler and Miescher, 1965
            60863.8 40 Z
Tanaka, Seya, et al., 1951; Ueda, 1955; missing citation; Dressler and Miescher, 1965
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B' 2Δi 60364.2 53 1217.4 54 15.61 54  1.322 54 0.021 54    1.302 B' → C 55 
Huber, 1964; missing citation
           B' → B 56 52 V 14508.6
Baer and Miescher, 1952; Ogawa, 1953; Ogawa and Shimauchi, 1956; Huber, 1964
            14538.7
Baer and Miescher, 1952; Ogawa, 1953; Ogawa and Shimauchi, 1956; Huber, 1964
           B' ↔ X 56 57 52 R 59900.7
Baer and Miescher, 1951; Baer and Miescher, 1952; Sutcliffe and Walsh, 1953; Tanaka, 1953; Ueda, 1955; missing citation; Dressler and Miescher, 1965; missing citation; missing citation
            60020.4 40 Z
Baer and Miescher, 1951; Baer and Miescher, 1952; Sutcliffe and Walsh, 1953; Tanaka, 1953; Ueda, 1955; missing citation; Dressler and Miescher, 1965; missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D 2Σ+ 3pσ 53084.7 2323.90 Z 22.885 58 0.75 2.0026 59 0.02175  [5.8E-6]  1.0618 D → A 60 45 9092.17 Z
Feast, 1950; Huber, 1964; missing citation; missing citation
           D ↔ X 60 52 61 V 53172.7
missing citation; missing citation; Gero, Schmid, et al., 1944; Baer and Miescher, 1952; Tanaka, 1953; Ogawa, 1955; Deezsi and Matrai, 1957; missing citation; Lagerqvist and Miescher, 1966; missing citation; Poland and Broida, 1971
            53292.4 40 Z
missing citation; missing citation; Gero, Schmid, et al., 1944; Baer and Miescher, 1952; Tanaka, 1953; Ogawa, 1955; Deezsi and Matrai, 1957; missing citation; Lagerqvist and Miescher, 1966; missing citation; Poland and Broida, 1971
C 2Πr 3pπ 52126 62 2395 63 15 63  2.000 63 64 0.030 63    1.062 C → A 64 65 8172
Heath, 1959; missing citation; missing citation
           C ↔ X 64 66 67 V 52251
missing citation; Schmid, 1928; missing citation; Gaydon, 1944; Herzberg, Lagerqvist, et al., 1956; missing citation; Lagerqvist and Miescher, 1966; missing citation; Poland and Broida, 1971
            52371
missing citation; Schmid, 1928; missing citation; Gaydon, 1944; Herzberg, Lagerqvist, et al., 1956; missing citation; Lagerqvist and Miescher, 1966; missing citation; Poland and Broida, 1971
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
b (4Σ-) (48680) 1206 68 H 15        b → a V 10395 68 H
missing citation; missing citation
            10375 68 H
missing citation; missing citation
            10350 68 H
missing citation; missing citation
            10323 68 H
missing citation; missing citation
            10300 68 H
missing citation; missing citation
            10272 68 H
missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B 2Πr 45942.6 69 1039.8 70 Z 8.32 0.17 1.152 70 0.012  4.9E-6  1.4167 B ↔ X 71 72 67 R 45392.1 73 Z
missing citation; missing citation; missing citation; Schmid, 1928; Sutcliffe and Walsh, 1953; missing citation; Ogawa, 1955; Ogawa and Shimauchi, 1956; Deezsi and Matrai, 1957; missing citation; missing citation; Lagerqvist and Miescher, 1962; Lagerqvist and Miescher, 1966; Engleman, Rouse, et al., 1970
45913.6 1037.2 70 Z 7.70 0.10 1.092 70 74 0.012  4.9E-6  1.4167  45481.7 73 Z
missing citation; missing citation; missing citation; Schmid, 1928; Sutcliffe and Walsh, 1953; missing citation; Ogawa, 1955; Ogawa and Shimauchi, 1956; Deezsi and Matrai, 1957; missing citation; missing citation; Lagerqvist and Miescher, 1962; Lagerqvist and Miescher, 1966; Engleman, Rouse, et al., 1970
A 2Σ+ 3sσ 43965.7 2374.31 Z 10.106 75 -0.0465 1.9965 76 77 78 0.01915 76  5.4E-6  1.06434 A ↔ X 79 80 81 67 V 44080.5
missing citation; Schmid, 1928; Gero and Schmid, 1948; Ogawa, 1955; Deezsi and Matrai, 1957; Koczkas, 1959; Engleman, Rouse, et al., 1970
            44200.2 82 Z
missing citation; Schmid, 1928; Gero and Schmid, 1948; Ogawa, 1955; Deezsi and Matrai, 1957; Koczkas, 1959; Engleman, Rouse, et al., 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a (4Πi) (38440) 1017 H 11        (a → X) 83 (38000)
Broida and Peyron, 1960; Frosch and Robinson, 1964
X 2Πr 119.82 84 1904.040 Z 14.100 85  [1.72016] 86 0.0182  [10.23E-6] 86  1.15077 3/2 ← 1/2 87 119.73 88 Z
Brown, Cole, et al., 1972
0 1904.204 Z 14.075 85  [1.67195] 86 89 0.0171  [0.54E-6] 86  1.15077  
Brown, Cole, et al., 1972
Rotation vibration sp.: 4→2
Horn and Dickey, 1964
Rotation vibration sp.: 4←0
Meyer, Haeusler, et al., 1965; Meyer and Haeusler, 1965
Rotation vibration sp.: 3→1
Horn and Dickey, 1964
Rotation vibration sp.: 3←0 90 91
Nichols, Hause, et al., 1955; Arcas, Haeusler, et al., 1963; Meyer, Haeusler, et al., 1964; Olman, McNelis, et al., 1964; Meyer, Haeusler, et al., 1965
Rotation vibration sp.: 2←1
Guerra, Sanchez, et al., 1977
Rotation vibration sp.: 2↔0 90 91 92
Nichols, Hause, et al., 1955; Horn and Dickey, 1964; Olman, McNelis, et al., 1964; Meyer, Haeusler, et al., 1965
Rotation vibration sp.: 1↔0 90 91 92 93 94 95 96 97
Shaw, 1956; Thompson and Green, 1956; missing citation; James and Thibault, 1964; Keck and Hause, 1968; Valentin, Boissy, et al., 1976; Johns, Reid, et al., 1977
Rotation sp. 98
Gallagher and Johnson, 1956; Palik and Rao, 1956; Favero, Mirri, et al., 1959; Hall and Dowling, 1966; Brown, Cole, et al., 1972
Raman sp. 99
Renschler, Hunt, et al., 1969; Shotton and Jones, 1970
EPR sp.
Brown and Radford, 1966; Ashford, Jarke, et al., 1972; Jarke, Ashford, et al., 1976
Hyperfine Λ doubl. sp. q
Neumann, 1970; Meerts and Dymanus, 1972; Meerts, 1976

Notes

1Excitation of a 1s0 electron to the 2π orbital.
2Rydberg states converging to the nitrogen K edge at 410.2 (3Π) and 411.6 (1Π) eV, observed in X-ray absorption and electron energy loss spectra at 406.3, 407.3, 408.6 eV, ...
3Tentatively interpreted as arising from two-electron excitation from the 1sN and lπ to the 2π orbital Morioka, Nakamura, et al., 1974. Only one peak (404.7 eV) is observed in the electron energy loss spectrum Wight and Brion, 1974.
4Two very weak bands in the X-ray absorption spectrum at 402.3 and 403.9 eV. 3
5Strong unresolved peak in X-ray absorption and electron energy loss spectra at 399.8 eV.6
6Excitation of a 1sN electron to the 2π orbital.
7Narayana and Price's absorption Rydberg series converging to c 3Π of NO+:
8Photoionization yields (NO+, N+, O+) in the region of these Rydberg series Hertz, Jochims, et al., 1974, 2.
9Fragments of an additional series Sasanuma, Morioka, et al., 1974. Additional cross sections 700 - 180 Å (143000 - 556000 cm-1).
10The Rydberg formulae do not accurately reproduce the observed bands owing to the slow variation of the quantum defect with n.
1132π nsσ Rydberg series converging to a 3Σ+, w 3Δ, b 3Σ-, A 1Σ-, W 1Δ of NO+. Only the first two or three members of each absorption series have been identified; long upper state progressions. Tables of absorption features 950 - 650 Å (105000 - 154000 cm-1) Tanaka, 1942, Huber, 1961*, Metzger, Cook, et al., 1967*. Absorption coefficients, photoionization and photodissociation yields Reese and Rosenstock, 1966, Metzger, Cook, et al., 1967, Watanabe, Matsunaga, et al., 1967, Bahr, Blake, et al., 1972, Hertz, Jochims, et al., 1974.
12n = 4...15. Sharp rotational structure.
13Joinging on to F 2Δ(n=3), N 2Δ(n=4), U 2Δ(n=5), and incompletely observed to n=8. Perturbations by stable and unstable states.
14Joining on to C 2Π, D 2Σ+(n=3), K 2Π, M 2Σ+(n=4), Q 2Π, R 2Σ+(n=5), and W 2Π, Y 2Σ+(n=6); bands of varying diffuseness have been observed to n=11. The influence of the unstable A' 2Σ+ state is briefly discussed in Miescher, 1976.
15Joining on to A 2Σ+(n=3), E 2Σ+(n=4), S 2Σ+(n=5), T 2Σ+(n=6) Z 2Σ+(n=7). The Be values decrease from 1.997 (n=3) to 1.713 for the highest observed state (n=11) as a consequence of nsσ ~ (n-1)dσ interactions.28 Sharp rotational structure.
16These band origins refer to N'=0 (non-existent for Λ ≠ 0) in the excited state and to the hypothetical level J"=0 of the X 2Π1/2 ground state, in accordance with definitions adopted in these tables. The corresponding numbers for the X 2Π3/2 component are obtained by subtracting 119.7 cm-1.
17v=1,2,3 diffuse
18See 16.
19v=0 perturbed by non-Rydberg level; v=1,2,3 very diffuse
20B value of the NO+ core. For details of the analysis and derived core parameters (polarizability, quadrupole moment) see Jungen and Miescher, 1969.
21Energy of the Δ (or L = 2) component relative to the hypothetical level J"=0, calculated using results from the analysis of the 14N18O spectrum; see Jungen and Miescher, 1969.
22Partial rot. Analyses for v=0,1 (15N18O). Perturbations by non-Rydberg levels. V=2,3,4 diffuse to varying degrees.
23v=0 coincides with I(v=6) and E(v=4), strong perturbation. B1 = 1.92.
24The interaction between R 2Σ+(v=0), I 2Σ+(v=5?), and the continuous A' 2Σ+ state has been observed in the spectra of four isotopes; see Figure 2.5 of Miescher and Huber, 1976.
25v=1,2 diffuse
26v=0,1 mixed with non-Rydberg levels, v=2,3,4 diffuse.
27A slight mixing of the ground state into the ndπ components is responsible for the larger than expected spin-orbit coupling in H'(A = +0.96, ξ = +0.92) and O'(A = +0.36, ξ = +0.34); see Jungen, 1970, also Kovacs, 1963, Suter, 1969, Miescher, 1971.
28Strong l-uncoupling, η(v=0) = 1.92, 3d and η(v=0) = 1.88, 4d for 3d and 4d, respectively Miescher, 1971. The magnitude of η was interpreted in terms of s~d mixing Jungen, 1970; the interaction matrix elements are 910 (4sσ ~3dσ) and 430 cm-1 (5sσ~4dσ). The non-negligible spin-orbit coupling in ndπ (see 27) gives rise to small perturbations between e levels of the 2Π F1 and F2 components Huber and Miescher, 1963, Kovacs, 1963, Suter, 1969, Miescher, 1971. Additional perturbations in H,H' by Rydberg and non-Rydberg levels Miescher, 1971. For H,H'(v=3) only Π- has been observed. The Π+ and Σ+ components of 0,0'(v=0) are weakly predissociated for all N, Π- above N=16 Suter, 1969.
29Approximate deperturbed constants, see 54; v=3 at 74580 cm-1 is very diffuse Miescher, 1976.
30The N→C 0-0 band is strongly mixed with B'→C 7-0; see 55.
31Heterogeneous perturbations by levels of B 2Π Jungen and Miescher, 1968. Levels having v≥1 are diffuse to varying degrees.
32A small perturbation by L 2Π(v=2?) affects the first few rotational levels in v=0; higher vibrational levels (v=1,2,3) are strongly mixed with non-Rydberg states (B 2Π and L 2Π).
33Λ-type doubling, Δ vfe(F1) = +0.034N(N+1).
34v=0...3 observed.
35Deperturbed.
36Five levels (v=4...8?) have been observed for various isotopes in the region 67800 - 72000 cm-1. Erratic behaviour with regard to diffuseness and isotopes shifts on account of interactions with the unstable A' 2Σ+ state and with npσ Rydberg states. See also Ben-Aryeh, 1973.
37ωeye = -0.1439. The levels v=10,11,12 are diffuse and lie above the limit 2D + 3P; v=13 not observed. See also Ben-Aryeh, 1973.
38Small perturbations in isotope spectra.
39Absorption in rare gas matrices Roncin, Damany, et al., 1967,197, in high pressure argon Miladi, le Falher, et al., 1975.
40See 16.
41A ~ -80.
42Fragments of several levels (vibr. Numbering not established) in perturbations with levels of B, C, K. Constants comparable to B Π.
43See 27.
44See 28.
45For experimental and theoretical f values see Wray, 1969, Groth, Kley, et al., 1971 and Gallusser and Dressler, 1971, respectively.
46Also observed by non-resonant multiphoton ionization spectroscopy Johnson, Berman, et al., 1975.
47Approximate deperturbed constants; see 54.
48Lines of the perturbed F→C 1-1 band are prominent in the NO laser spectrum Miescher, 1974; see 54, 55.
49missing note
50v=3,4 somewhat diffuse, v=5 sharp. Emission observed from v≤2; Huber, 1964 reports an abrupt breaking-off in the E→A 2-2 band for an upper state energy of 68100 cm-1.
51E→C not observed, in agreement with theoretical predictions Gallusser and Dressler, 1971 regarding the dipole transition strengths of E→C and E→D.
52For references to Franck-Condon factor calculations see the review by Ortenberg and Antropov, 1967.
53A0= -2.2 Jungen, 1966, A1= -2.4 Jungen, 1966, ..., A9= -4.9 Jungen, 1966.
54Deperturbed constants; B' 2Δ interacts strongly with F 2Δ (matrix element He~(F 2Δ) ~ 450 cm-1) and N 2Δ (He ~ 400) Felenbok and Lefebvre-Brion, 1966, Jungen, 1966; see also 57. Perturbations by B 2Π are unobservably small because of unfavorable Franck-Condon factors Field, Gottscho, et al., 1975.
55Fragments of two bands, 4-1 at 9800 cm-1 and 7-0 at 15300 cm-1, both appearing on account of configuration interaction, in the upper state with F 2Δ and N 2Δ, respectively, in the lower state with B 2Π. Lines of the 4-1 band, together with F→C 1-1, are seen in the NO laser spectrum Huber, 1964, 2, Jungen, Miescher, et al., 1966, Broida and Miescher, 1973, Miescher, 1974.
56Lifetime τ(v=1) = 75 ns Brzozowski, Elander, et al., 1974.
57An experimentally deperturbed spectrum of B'-X is observed in matrix absorption Roncin, Damany, et al., 1967, Roncin, 1968, Boursey, 1976. A gradual deperturbation in the gas phase is induced by increasingly high foreign gas pressures Miladi, le Falher, et al., 1975.
58ωeze = -0.22, v≤4 Barrow and Miescher, 1957, not including v=5 and v=6 Lagerqvist and Miescher, 1966. The vibrational constants clearly differ from those of other Rydberg 2Σ states or of the NO+ ground state. It has been suggested [see e.g. Miescher, 1971, also Ben-Aryeh, 1973] that there is an avoided crossing of the potential curves of D 2Σ+ and A' 2Σ+ (unstable, arising from 4S+3P).
59From Barrow and Miescher, 1957. Heterogeneous perturbations by B 2Π; for details see Jungen and Miescher, 1968. According to Huber, 1964 the rotational structure of D→A 1-1, 2-2, 3-3 breaks off abruptly at D state energies of 59270 cm-1 in v=1,2 and 60100 cm-1 in v=3.
60Lifetimes τ(v=0) = 18.4 ns Hesser, 1968, τ(v=0)= 19.0 ns Benoist D'Azy, Lopez-Delgado, et al., 1975, τ(v=0)= 25.7 ns Brzozowski, Elander, et al., 1974; τ(v=1) = 26.4 ns Brzozowski, Elander, et al., 1974.
61f00 = 0.0025 Bethke, 1959, f10 = 0.0046 Bethke, 1959, f20 = 0.0033 Bethke, 1959; from integrated absorption intensities Bethke, 1959. See also Ory, 1964, Callear and Pilling, 1970.
62A0 = +3.0 cm-1 Ackermann and Miescher, 1968.
63Approximate deperturbed constants; strong interaction with B 2Π, see 70. Λ-type doubling, Δ vfe(F1) = +0.016N(N+l).
64Weak predissociation in v=0 above N=3 or 4 [see Miescher, 1974, Dingle, Freedman, et al., 1975 and 100]. The predissociation is assumed to occur via the continuum of the a 4Π state and causes a reduction of the measured lifetimes in v=0 from 20 ns for N ~< 4 to 3 ns for N ~> 4 Benoist D'Azy, Lopez-Delgado, et al., 1975; τ(v=1) ≤ 0.3 ns. No emission has been observed from levels having v≥1.
65See 45.
66f00 = 0.0023 Bethke, 1959, Mandelman and Carrington, 1974, higher value in Callear and Pilling, 1970; f10 = 0.0058 Bethke, 1959, f20 = 0.0027 Bethke, 1959. See also Ory, 1964.
67See 52 RKR Franck-Condon factors for the β bands Jain and Sahni, 1968, Generosa and Harris, 1970, for the γ bands Jain and Sahni, 1968, Spindler, Isaacson, et al., 1970.
68A different vibrational numbering was suggested by Gilmore, 1965.
69Av = +31.32 + 1.152(v+1/2) + 0.0448(v+1/2)2. The expression represents the data of Engleman, Rouse, et al., 1970 for the first seven levels. Av increases to +77 for v=25; see Lagerqvist and Miescher, 1966.
70Effective constants for v ≤5 Callear and Smith, 1965. The reevaluation of the constants by Engleman, Rouse, et al., 1970, based on new measurements of the β bands and using a modified Hill-Van Vleck expression, gave G(v) = 1037.45(v+1/2) - 7.472(v+1/2)2 + 0.07253~(v+1/2)3, Bv = 1.1250 - 0.0l348(v+1/2) + 0.000125~(v+1/2)2. The highest level observed in emission is v'=7 [mixed with C(v=0)] Deezsi, 1960, Ackermann and Miescher, 1969; vibrational levels as high as v'=29 have been identified in the absorption spectrum Dressler and Miescher, 1965. They are strongly perturbed by interaction with the Rydberg states C 2Π (matrix element He(C 2Π) ~1200 cm-1) and K 2Π (He(K 2Π) ~800); see Lagerqvist and Miescher, 1958, Felenbok and Lefebvre-Brion, 1966. A complete deperturbation, taking also into account the interaction with L 2Π, was attempted by Bartholdi, Leoni, et al., 1971; more recent results by Gallusser and Dressler (ωe = 1025.0 Boursey and Roncin, 1975, ωexe = 4.52 Boursey and Roncin, 1975, ωeye = -0.0846 Boursey and Roncin, 1975) are quoted by Boursey and Roncin, 1975 who observed the deperturbed spectrum of B 2Π in matrix absorption Roncin, Damany, et al., 1967, Roncin, 1968. A similar deperturbation is induced by high pressure foreign gases Miladi, le Falher, et al., 1975. Heterogeneous interactions with levels of D 2Σ+ and M 2Σ+ are discussed by Jungen and Miescher, 1968.
71Radiative lifetimes τ(v=0) = 1.99 μs Brzozowski, Elander, et al., 1974, τ(v=1)= 1.78 μs Brzozowski, Elander, et al., 1974, τ(v=4)= 1.65 μs Brzozowski, Elander, et al., 1974. Jeunehomme and Duncan, 1964 give somewhat longer lifetimes.
72f00 = 2.5E-8 Hasson and Nicholls, 1971; fv'0 values increase to 4.6E-5 for v'=6 Bethke, 1959, Hasson and Nicholls, 1971, Farmer, Hasson, et al., 1972. Above v'=7 the intensities are governed by the strong interactions with the 3p and 4p Rydberg states; see 70. See also Antropov, Dronov, et al., 1964, Ory, 1964, Marr, 1964, Antropov, 1968.
73Referring to the hypothetical J=0 levels in both upper and lower state.
74Λ-type doubling Huber, 1964. Δ vfe(v=0)= -0.0064(J+1/2) Huber, 1964.
75 Engleman, Rouse, et al., 1970
76Rotational constants reevaluated from data in Barrow and Miescher, 1957 and Engleman, Rouse, et al., 1970; the equilibrium constants of the latter appear unreliable.
77Spin splitting constant γ(v=3) = -0.0027650, μel(v=3)=1.10 D. These constants, as well as eqQ and magnetic hf constants, have been recalculated by Woods and Dixon, 1976 from the optical-rf double resonance experiment of Bergeman and Zare, 1974; see also Green, 1972 Walch and Goddard, 1975. Hanle effect German, Zare, et al., 1971, Gouedard, 1972, Weinstock, Zare, et al., 1972.
78According to Gero and Schmid, 1948, Deezsi, 1959 the intensity of the emission bands drops sharply at N'=74,64,52,38 in v'= 0,1,2,3, respectively; bands with v'≥4 have not been observed in emission.
79Radiative lifetimes τ(v=0) = 215 ns Zacharias, Halpern, et al., 1976, τ(v=1) = 203 ns Zacharias, Halpern, et al., 1976,τ(v=2) = 174 ns Zacharias, Halpern, et al., 1976; good agreement with Brzozowski, Elander, et al., 1974 except for v=2 where these authors find τ(v=2) = 195 ns Zacharias, Halpern, et al., 1976. See also Jeunehomme, 1966, Weinstock, Zare, et al., 1972, Benoist D'Azy, Lopez-Delgado, et al., 1975.
80f00 = 0.00038 Weber and Penner, 1957, Bethke, 1959, Pery-Thorne and Banfield, 1970, Farmer, Hasson, et al., 1972, Hasson, Farmer, et al., 1972, f10= 0.00081 Weber and Penner, 1957, Bethke, 1959, Pery-Thorne and Banfield, 1970, Farmer, Hasson, et al., 1972, Hasson, Farmer, et al., 1972, f20= 0.00069 Weber and Penner, 1957, Bethke, 1959, Pery-Thorne and Banfield, 1970, Farmer, Hasson, et al., 1972, Hasson, Farmer, et al., 1972, f30= 0.00030 Weber and Penner, 1957, Bethke, 1959, Pery-Thorne and Banfield, 1970, Farmer, Hasson, et al., 1972, Hasson, Farmer, et al., 1972; weighted average values. Variation of transition moment with r Marr, 1964, Callear, Pilling, et al., 1966, Jeunehomme, 1966, Antropov, Kolesnikov, et al., 1967, Antropov, 1968, Jain and Sahni, 1968, Bubert, 1972; see also Poland and Broida, 1971.
81Also observed in two-photon excitation Bray, Hochstrasser, et al., 1974, Bray, Hochstrasser, et al., 1975, Zacharias, Halpern, et al., 1976 and magnetic rotation spectra Robinson, 1967. 15N16O band head measurements Cisak, Danielak, et al., 1970.
82see 16 .
83Assignment uncertain, only observed in rare gas matrices. Predicted lifetime τ= 0.1 s Lefebvre-Brion and Guerin, 1968. See also Zarur and Chiu, 1973.
84Av = +123.26 - 0.1906(v+1/2) - 0.0108(v+1/2)2; from the analysis of β and γ bands having v"≤16 Engleman, Rouse, et al., 1970. Much more precise constants for v=0 and 1 (A eff=123.1393 v=0 and A eff=122.8935 v=1, respectively) and their J dependence have been determined from measurements on the vibration-rotation fundamental and on the pure rotation spectrum Valentin, Boissy, et al., 1976, Johns, Reid, et al., 1977. See also Brown, Cole, et al., 1972, Mizushima, Evenson, et al., 1972.
85ωeye = 0.0110 (2Π3/2) James and Thibault, 1964, Meyer, Haeusler, et al., 1965 and ωeye= 0.0077 (2Π1/2) James and Thibault, 1964, Meyer, Haeusler, et al., 1965; these are effective vibrational constants obtained from rotation-vibration spectra James and Thibault, 1964, Meyer, Haeusler, et al., 1965. Valentin, Boissy, et al., 1976, Johns, Reid, et al., 1977 have accurately evaluated ΔG(1/2) = 1875.972 Valentin, Boissy, et al., 1976, Johns, Reid, et al., 1977; see 84. Engleman, Rouse, et al., 1970, see 84, give the following expression, valid for v≤l6: G(v) = 1904.405(v+1/2) - 14.1870(v+1/2)2 + 0.02400(v+1/2)3 - 0.00093(v+1/2)4, v≤16. The vibrational levels have been observed to v=23 Brook and Kaplan, 1954.
86Effective rotational constants from rotation Gallagher and Johnson, 1956, Favero, Mirri, et al., 1959, Hall and Dowling, 1966 and rotation-vibration spectra Hakuta and Uehara, 1975, Valentin, Boissy, et al., 1976. Precise B and D values for v=0 and 1 have been calculated by Johns, Reid, et al., 1977, see 84, B0 = 1.696115, B1 = 1.678544; D0 = 5.34E-6, D1 = 5.37E-6; good agreement with Valentin, Boissy, et al., 1976. Engleman, Rouse, et al., 1970, see 84, give the following expression for v≤l6: Bv = 1.70427 - 0.01728(v+1/2) - 0.000037(v+1/2)2 Engleman, Rouse, et al., 1970.
87Observed in the electronic-rotational Raman spectrum Rasetti, 1930 Fast, Welsh, et al., 1969, Lepard, 1970, and as magnetic dipole transition in the far IR Brown, Cole, et al., 1972. Laser Zeeman spectrum Mizushima, Evenson, et al., 1972.
88See 73.
89Λ-type doubling, Δ vfe ~ (+)0.0117(J+1/2). Precise Λ-doubling constants have been evaluated by Meerts and Dymanus, 1972, Meerts, 1976, Valentin, Boissy, et al., 1976, Johns, Reid, et al., 1977, the variation of p and q with v agrees with the measurements of Guerra, Sanchez, et al., 1977.
90Magnetic rotation Mann and Hause, 1960, Aubel and Hause, 1966, Buckingham and Segal, 1968, Keck and Hause, 1968, 2, Blum, Nill, et al., 1973.
91Integrated band intensities, dipole moment function Schurin and Ellis, 1966, Michels, 1971, Chandraiah and Cho, 1973, Konkov and Vorontsov, 1973; Billingsley, 1975, Billingsley, 1976.
922-O band of 15N18O Griggs and Rao, 1967, 1-0 band of 15N16,18O Fletcher and Begun, 1957, Griggs and Rao, 1967, Keck and Hause, 1968.
93Λ-doubling, nuclear hfs, and Zeeman splittings Blum, Nill, et al., 1972, Nill, Blum, et al., 1972. 2Π3/2 laser magnetic resonance spectra Zeiger, Blum, et al., 1973, Hakuta and Uehara, 1975.
94Laser Stark spectrum Hoy, Johns, et al., 1975; μel(2Π1/2,v=0) = 0.1574 D Hoy, Johns, et al., 1975 (see also 102), μel(2Π1/2,v=1) = 0.1416 D. For 2Π3/2 the difference μel(v=1) - μel(v=0) = -0.01735 D was determined.
95From pressure-broadened linewidths Tejwani, Golden, et al., 1976 derive a value of Qm= 2.4E-26 esu cm2 Tejwani, Golden, et al., 1976 for the quadrupole moment of NO. Earlier results are reviewed in this paper.
96Absorption spectrum of CO laser radiation by NO Richton, 1976, Hanson, Monat, et al., 1976, Garside, Ballik, et al., 1977.
97Δv=1 sequence in emission Mantz, Shafer, et al., 1976. Several laser lines have been observed in the P branches of the 6-5, ..., 11-10 bands Deutsch, 1966.
98Zeeman effect Mizushima, Cox, et al., 1955, Stark effect Burrus and Graybeal, 1958, both in 2Π1/2.
99See also references in 87.
100From the breaking-off below N'=4 in the C→A 0-0 band emitted during radiative recombination of N and 0 atoms via inverse predissociation Dingle, Freedman, et al., 1975, see also Mandelman, Carrington, et al., 1973; in good agreement with Callear and Pilling, 1970, 2. A very slightly higher value, i.e. 6.4977 ≤ D00 ≤ 6.5007 eV Miescher, 1974, is suggested Miescher, 1974 by the failure to detect F→C laser transitions ending on the lowest C level observed in the N + O recombination spectrum.
101Extrapolation of selected rotational lines in the nf←X Rydberg series Miescher, 1974, 2, Miescher, 1976, based on the fine structure analysis of the 4f and 5f complexes Jungen and Miescher, 1969.
102μel =0.15872 D, 2Π1/2(v=0,J=1/2) Neumann, 1970 from Stark effect;

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Johnston and Giauque, 1929
Johnston, H.L.; Giauque, W.F., THE HEAT CAPACITY OF NITRIC OXIDE FROM 14°K. TO THE BOILING POINT AND THE HEAT OF VAPORIZATION. VAPOR PRESSURES OF SOLID AND LIQUID PHASES. THE ENTROPY FROM SPECTROSCOPIC DATA, J. Am. Chem. Soc., 1929, 51, 11, 3194-3214, https://doi.org/10.1021/ja01386a004 . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T., The Binding Energy between NO and NO+, J. Chem. Phys., 1977, 66, 9, 3985, https://doi.org/10.1063/1.434450 . [all data]

Puckett and Teague, 1971
Puckett, L.J.; Teague, A.W., Production of H3O+.nH2O from NO+ Precursor in NO - H2O Gas Mixtures, J. Chem. Phys., 1971, 54, 6, 2564, https://doi.org/10.1063/1.1675213 . [all data]

Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B., Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]], J. Phys. Chem., 1995, 99, 7819. [all data]

Rebbert and Laidler, 1952
Rebbert, R.E.; Laidler, K.J., Kinetics of the decomposition of diethyl peroxide, J. Chem. Phys., 1952, 20, 574-577. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Kuo, Zhang, et al., 1997
Kuo, S.C.; Zhang, Z.Y.; Ross, S.K.; Klemm, R.B.; Johnson, R.D.; Monks, P.S.; Thorn, R.P.; Stief, L.J., Discharge flow-photoionization mass spectrometric study of HNO: Phtoionization efficiency spectrum and ionization energy and proton affinity of NO, J. Phys. Chem. A, 1997, 101, 4035. [all data]

Reiser, Habenicht, et al., 1988
Reiser, G.; Habenicht, W.; Muller-Dethlefs, K.; Schlag, E.W., The ionization energy of nitric oxide, Chem. Phys. Lett., 1988, 152, 119. [all data]

Sander, Chewter, et al., 1987
Sander, N.; Chewter, L.A.; Muller-Dethlefs, K.; Schlag, E.W., High-resolution zero-kinetic-energy photoelectron spectroscopy of nitric oxide, Phys. Rev. A:, 1987, 36, 4543. [all data]

Muller-Dethlefs, Sander, et al., 1984
Muller-Dethlefs, K.; Sander, M.; Schlag, E.W., Two-colour photoionization resonance spectroscopy of NO: Complete separation of rotational levels of NO+ + at the ionization threshold, Chem. Phys. Lett., 1984, 112, 291. [all data]

Seaver, Chupka, et al., 1983
Seaver, M.; Chupka, W.A.; Colson, S.D.; Gauyacq, D., Double resonance multiphoton ionization studies of high Rydberg states in NO, J. Phys. Chem., 1983, 87, 2226. [all data]

Ebata, Anezaki, et al., 1983
Ebata, T.; Anezaki, Y.; Fujii, M.; Mikami, N.; Ito, M., High Rydberg states of NO studied by two-color multiphoton spectroscopy, J. Phys. Chem., 1983, 87, 4773. [all data]

Fantoni, Giardini-Guidoni, et al., 1982
Fantoni, R.; Giardini-Guidoni, A.; Tiribelli, R., (e,2e) Spectroscopy of valence states of the NO molecule, J. Electron Spectrosc. Relat. Phenom., 1982, 26, 99. [all data]

Kim, Stephan, et al., 1981
Kim, Y.B.; Stephan, K.; Mark, E.; Mark, T.D., Single and double ionization of nitric oxide by electron impact from threshold up to 180 eV, J. Chem. Phys., 1981, 74, 6771. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]

Miescher, 1976
Miescher, E., High resolution absorption spectrum of nitric oxide (NO) in the region of the first ionization limit, Can. J. Phys., 1976, 54, 2074. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Edqvist, Asbrink, et al., 1971
Edqvist, O.; Asbrink, L.; Lindholm, E., On the photoelectron spectrum of NO, Z. Naturforsch. A:, 1971, 26, 1407. [all data]

Collin, Delwiche, et al., 1971
Collin, J.E.; Delwiche, J.; Natalis, P., Energy levels of NO+ ion by He and Ar resonance lines photoelectron spectrometry, Intern. J. Mass Spectrom. Ion Phys., 1971, 7, 19. [all data]

Hildenbrand, 1970
Hildenbrand, D.L., Electron impact studies of the IIA metal chlorides, Intern. J. Mass Spectrom. Ion Phys., 1970, 4, 75. [all data]

Cristy and Mamantov, 1970
Cristy, S.S.; Mamantov, G., Cryogenic mass spectrometry of reactive fluorine-containing species. I. The mass spectra of sulfur hexafluoride, chlorine trifluoride, chlorine monofluoride, nitrosyl fluoride and tetrafluorohydrazine, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 309. [all data]

Peatman, Borne, et al., 1969
Peatman, W.B.; Borne, T.B.; Schlag, E.W., Photoionization resonance spectra. I. Nitric oxide and benzene, Chem. Phys. Lett., 1969, 3, 492. [all data]

Jungen and Miescher, 1969
Jungen, C.; Miescher, E., Absorption spectrum of the NO molecule. IX. The structure of the f complexes, the ionization potential of NO, and the quadrupole moment of NO+, Can. J. Phys., 1969, 47, 1769. [all data]

Cantone, Emma, et al., 1968
Cantone, B.; Emma, V.; Grasso, F., Fine structure near the ionization threshold of Kr, O2, and NO by electron impact, Adv. Mass Spectrom., 1968, 4, 599. [all data]

Hierl and Franklin, 1967
Hierl, P.M.; Franklin, J.L., Appearance potentials and kinetic energies of ions from N2, CO, and NO, J. Chem. Phys., 1967, 47, 3154. [all data]

Dressler and Miescher, 1965
Dressler, K.; Miescher, E., Absorption spectrum of the NO molecule. V. Survey of excited states and theirinteractions, Astrophys. J., 1965, 141, 1266. [all data]

Nicholson, 1963
Nicholson, A.J.C., Photo-ionization efficiency curves. Measurement of ionization potentials and interpretation of fine structure, J. Chem. Phys., 1963, 39, 954. [all data]

Huber, 1961
Huber, K.P., Die Rydberg-Serien im Absorptions-spektrum des NO-Molekuls, Helv. Phys. Acta, 1961, 34, 929. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Kibel and Nyberg, 1979
Kibel, M.H.; Nyberg, G.L., Angular distribution valence photoelectron spectra of nitric oxide, J. Electron Spectrosc. Relat. Phenom., 1979, 17, 1. [all data]

Erman, Karawajczyk, et al., 1995
Erman, P.; Karawajczyk, A.; Rachlew-Kallne, E.; Stromholm, C., Photoionization and photodissociation of nitric oxide in the range 9-35 eV, J. Chem. Phys., 1995, 102, 3064. [all data]

Oertel, Schenk, et al., 1980
Oertel, H.; Schenk, H.; Baumgartel, H., Ion pair formation from photon irradiation of O2, NO and CO in 17-30 eV, Chem. Phys., 1980, 46, 251. [all data]

Locht and Momigny, 1971
Locht, R.; Momigny, J., Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]

Appell, Durup, et al., 1966
Appell, J.; Durup, J.; Heitz, F., Sur le seuil d'apparition des ions fragments produits avec exces d'energie cinetique, Advan. Mass Spectrom., 1966, 3, 457. [all data]

Cloutier and Schiff, 1959
Cloutier, G.G.; Schiff, H.I., Electron impact study of nitric oxide using a modified retarding potential difference method, J. Chem. Phys., 1959, 31, 793. [all data]

Doong and Bizot, 1973
Doong, P.; Bizot, M., Dissociation uni- et bi-moleculaire des ions NO+, Int. J. Mass Spectrom. Ion Phys., 1973, 10, 227. [all data]

Travers, Cowles, et al., 1989
Travers, M.J.; Cowles, D.C.; Ellison, G.B., Reinvestigation of the Electron Affinities of O2 and NO, Chem. Phys. Lett., 1989, 164, 5, 449, https://doi.org/10.1016/0009-2614(89)85237-6 . [all data]

Miescher and Huber, 1976
Miescher, E.; Huber, K.P., International Review of Science, Physical Chemistry Series Two. Electronic Spectrum of the NO Molecule, Butterworths, London-Boston, 1976, 73. [all data]

Wight and Brion, 1974
Wight, G.R.; Brion, C.E., K-shell excitations in NO and O2 by 2.5 keV electron impact, J. Electron Spectrosc. Relat. Phenom., 1974, 4, 313. [all data]

Morioka, Nakamura, et al., 1974
Morioka, Y.; Nakamura, M.; Ishiguro, E.; Sasanuma, M., K absorption structure of the nitrogen atom in the nitric oxide molecule, J. Chem. Phys., 1974, 61, 1426. [all data]

Sasanuma, Morioka, et al., 1974
Sasanuma, M.; Morioka, Y.; Ishiguro, E.; Nakamura, M., Rydberg series in the NO molecule near 600 A, J. Chem. Phys., 1974, 60, 327. [all data]

Gardner, Lynch, et al., 1973
Gardner, A.; Lynch, M.; Stewart, D.T.; Watson, W.S., Photoabsorption cross sections of NO in the 380-660 Å region, J. Phys. B:, 1973, 6, 262. [all data]

Lee, Carlson, et al., 1973
Lee, L.C.; Carlson, R.W.; Judge, D.L.; Ogawa, M., The absorption cross sections of N2, O2, CO, NO, CO2, N2O, CH4, C2H4, C2H6 and C4H10 from 180 to 700 Å, J. Quant. Spectrosc. Radiat. Transfer, 1973, 13, 1023. [all data]

Tanaka, 1942
Tanaka, Y., The extreme ultra-violet absorption spectra of nitric oxide, Sci. Pap. Inst. Phys. Chem. Res. Jpn., 1942, 39, 456. [all data]

Edqvist, Lindholm, et al., 1970
Edqvist, O.; Lindholm, E.; Selin, L.E.; Sjogren, H.; Asbrink, L., Rydberg series in small molecules. VII. Rydberg series and photoelectron spectroscopy of NO, Ark. Fys., 1970, 40, 439. [all data]

Metzger, Cook, et al., 1967
Metzger, P.H.; Cook, G.R.; Ogawa, M., Photoionization and absorption coefficients of NO in the 600 to 950 A region, Can. J. Phys., 1967, 45, 203. [all data]

Reese and Rosenstock, 1966
Reese, R.M.; Rosenstock, H.M., Photoionization mass spectrometry of NO, J. Chem. Phys., 1966, 44, 2007. [all data]

Watanabe, Matsunaga, et al., 1967
Watanabe, K.; Matsunaga, F.M.; Sakai, H., Absorption coefficient and photoionization yield of NO in the region 580-1350 A, Appl. Opt., 1967, 6, 391. [all data]

Bahr, Blake, et al., 1972
Bahr, J.L.; Blake, A.J.; Carver, J.H.; Gardner, J.L.; Kumar, V., Photoelectron spectra and partial photoionization cross sections for NO, N2O, CO, CO2 and NH3, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 59. [all data]

Hertz, Jochims, et al., 1974
Hertz, H.; Jochims, H.W.; Sroka, W., The formation of O(3s3So) and N(3s4P) by photodissociation of NO, Phys. Lett. A, 1974, 46, 365. [all data]

Gardner and Samson, 1973
Gardner, J.L.; Samson, J.A.R., Photoelectron spectroscopy of nitric oxide between threshold and 972 Å, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 153. [all data]

Kleimenov, Chizhov, et al., 1972
Kleimenov, V.I.; Chizhov, Yu.V.; Vilesov, F.I., Study of autoionization processes in nitric oxide by photoelectron spectroscopy, Opt. Spectrosc. Engl. Transl., 1972, 32, 371, In original 702. [all data]

Caprace, Delwiche, et al., 1976
Caprace, G.; Delwiche, J.; Natalis, P.; Collin, J.E., Preionization effects in photoelectron spectra: vibrational enhancement of NO+, X1Σ+, Chem. Phys., 1976, 13, 43. [all data]

Miescher and Alberti, 1976
Miescher, E.; Alberti, F., Atlas of the absorption spectrum of nitric oxide (NO) between 1420 and 1250 Å, J. Phys. Chem. Ref. Data, 1976, 5, 309. [all data]

Lagerqvist and Miescher, 1958
Lagerqvist, A.; Miescher, E., Absorptionsspektrum des NO-Molekuls Feinstruktur-Analyse der δ- und β-Banden und homogene Storung C2Π--B2Π, Helv. Phys. Acta, 1958, 31, 221. [all data]

Marmo, 1953
Marmo, F.F., Absorption coefficients of nitrogen oxide in the vacuum ultraviolet, J. Opt. Soc. Am., 1953, 43, 1186. [all data]

Watanabe, Marmo, et al., 1953
Watanabe, K.; Marmo, F.F.; Inn, E.C.Y., Photoionization cross section of nitric oxide, Phys. Rev., 1953, 91, 1155. [all data]

Killgoar, Leroi, et al., 1973
Killgoar, P.C., Jr.; Leroi, G.E.; Berkowitz, J.; Chupka, W.A., Photoionization mass spectrometric study of NO. A closer look at the threshold region, J. Chem. Phys., 1973, 58, 803. [all data]

Ng, Mahan, et al., 1976
Ng, C.Y.; Mahan, B.H.; Lee, Y.T., Photoionization with molecular beams. I. Autoionization structure of nitric oxide near the threshold, J. Chem. Phys., 1976, 65, 1956. [all data]

Miescher, 1966
Miescher, E., Absorption spectrum of the NO molecule. Part VII. Extension of the Rydberg series of ns, np, nd, and nf ... complexes, J. Mol. Spectrosc., 1966, 20, 130. [all data]

Huber, 1964
Huber, M., Excited states and Rydberg series in the emission spectrum of NO, Helv. Phys. Acta, 1964, 37, 329. [all data]

Lagerqvist and Miescher, 1962
Lagerqvist, A.; Miescher, E., Absorption spectrum of the NO molecule. II. New fine-structure analyses below 1600 Å, Can. J. Phys., 1962, 40, 352. [all data]

Lagerqvist and Miescher, 1966
Lagerqvist, A.; Miescher, E., Absorption spectrum of the NO molecule. VI. Band structures below 1,600 Å, Rydberg states C2Π, D2Σ+, K2Π, M2Σ+, S2Σ+, non-Rydberg states B2Π, L2Π and their interactions, Can. J. Phys., 1966, 44, 1525. [all data]

Barrow and Miescher, 1957
Barrow, R.F.; Miescher, E., Fine structure analysis of NO absorption bands in the Schumann region, Proc. Phys. Soc. London Sect. A, 1957, 70, 219. [all data]

Huber, Huber, et al., 1963
Huber, K.P.; Huber, M.; Miescher, E., Rydberg-series of the NO-molecule in the visible and infrared emission spectrum, Phys. Lett., 1963, 3, 315. [all data]

Huber and Miescher, 1963
Huber, K.P.; Miescher, E., Absorption spectrum of the NO molecule, Helv. Phys. Acta, 1963, 36, 257. [all data]

Feast, 1950
Feast, M.W., Two new 2Σ-2Σ systems due to the molecule NO, Can. J. Res. Sect. A, 1950, 28, 488. [all data]

Heath, 1959
Heath, Los Alamos Report, Rpt. LA-2335, 1959, 1. [all data]

Tanaka, Seya, et al., 1951
Tanaka, Y.; Seya, M.; Mori, K., New absorption bands of the NO molecule in the extreme ultraviolet region, J. Chem. Phys., 1951, 19, 979. [all data]

Ueda, 1955
Ueda, M., The absorption spectrum of nitric oxide in the far-ultraviolet region, Sci. Light (Tokyo), 1955, 3, 143. [all data]

Baer and Miescher, 1952
Baer, P.; Miescher, E., Band spectra in the Schumann region of NO and N2+ with enriched nitrogen-15, Nature (London), 1952, 169, 581. [all data]

Ogawa, 1953
Ogawa, M., Band spectra of nitric oxide in the visible and near infra-red regions, Sci. Light (Tokyo), 1953, 2, 87. [all data]

Ogawa and Shimauchi, 1956
Ogawa, M.; Shimauchi, M., Rotational constants of B' state of nitric oxide and (vibrational and rotational constants of X2Πr and B2Πr), Sci. Light (Tokyo), 1956, 5, 147. [all data]

Baer and Miescher, 1951
Baer, P.; Miescher, E., Ein neues Bandensystem des NO-Molekuls, Helv. Phys. Acta, 1951, 24, 331. [all data]

Sutcliffe and Walsh, 1953
Sutcliffe, L.H.; Walsh, A.D., The ultra-violet absorption spectrum of nitric oxide, Proc. Phys. Soc. London Sect. A, 1953, 66, 209. [all data]

Tanaka, 1953
Tanaka, Y., On the emission bands of the NO molecule in the vacuum ultraviolet region, J. Chem. Phys., 1953, 21, 788. [all data]

Gero, Schmid, et al., 1944
Gero, L.; Schmid, R.; Von Szily, F.K., Rotationsanalyse der ε-banden des NO molekuls, Physica (The Hague), 1944, 11, 144. [all data]

Ogawa, 1955
Ogawa, M., On the emission spectra of the β-, γ- and Σ-systems of nitric oxide, Sci. Light (Tokyo), 1955, 3, 90. [all data]

Deezsi and Matrai, 1957
Deezsi, I.; Matrai, T., Further bands in the γ, ε and β band systems of the molecular spectrum of nitric oxide, Acta Phys. Acad. Sci. Hung., 1957, 7, 111. [all data]

Poland and Broida, 1971
Poland, H.M.; Broida, H.P., Fluorescence of the γ, ε and δ systems of nitric oxide; polarization and use of calculated intensities for spectrometer calibration, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1863. [all data]

Schmid, 1928
Schmid, R., Uber die banden der dritten positiven stickstoffgruppe, Z. Phys., 1928, 49, 428. [all data]

Gaydon, 1944
Gaydon, A.G., The band spectrum of NO: the gamma and epsilon systems, Proc. Phys. Soc. London, 1944, 56, 95. [all data]

Herzberg, Lagerqvist, et al., 1956
Herzberg, G.; Lagerqvist, A.; Miescher, E., Fine structure analysis and mutual perturbation of the δ and β bands of the NO molecule, Can. J. Phys., 1956, 34, 622. [all data]

Engleman, Rouse, et al., 1970
Engleman, R., Jr.; Rouse, P.E.; Peek, H.M.; Baiamonte, V.D., Beta and gamma band systems of nitric oxide, Rpt. LA-4364, 1970, 1-37. [all data]

Gero and Schmid, 1948
Gero, L.; Schmid, R., Dissociation energy of the NO molecule, Proc. Phys. Soc. London, 1948, 60, 533. [all data]

Koczkas, 1959
Koczkas, E., The rotational analysis of the bands (2,5) and (2,6) in the γ band system of the NO molecule, Acta Phys. Acad. Sci. Hung., 1959, 10, 117. [all data]

Broida and Peyron, 1960
Broida, H.P.; Peyron, M., Emission spectra of N2, O2, and NO molecules trapped in solid matrices, J. Chem. Phys., 1960, 32, 1068. [all data]

Frosch and Robinson, 1964
Frosch, R.P.; Robinson, G.W., Emission spectrum of NO in solid rare gases: the lifetime of the a4Π state and the spectrum of the a4Π → X2Π and B2Π → X2Π transitions, J. Chem. Phys., 1964, 41, 367. [all data]

Brown, Cole, et al., 1972
Brown, J.M.; Cole, A.R.H.; Honey, F.R., Magnetic dipole transitions in the far infra-red spectrum of nitric oxide, Mol. Phys., 1972, 23, 287. [all data]

Horn and Dickey, 1964
Horn, E.F.; Dickey, F.P., Near-infrared emission spectrum of NO, J. Chem. Phys., 1964, 41, 1614. [all data]

Meyer, Haeusler, et al., 1965
Meyer, C.; Haeusler, C.; Barchewitz, P., Constantes moleculaires de l'oxyde nitrique NO. Etudes des bandes d'absorption infrarouge v0-2 et v0-4, J. Phys. (Paris), 1965, 26, 799. [all data]

Meyer and Haeusler, 1965
Meyer, C.; Haeusler, C., Spectre de vibration-rotation de l'oxyde nitrique NO. Etude de la bande v0→4 a 7336 cm-1, C.R. Acad. Sci. Paris, 1965, 260, 4182. [all data]

Nichols, Hause, et al., 1955
Nichols, N.L.; Hause, C.D.; Noble, R.H., Near infrared spectrum of nitric oxide, J. Chem. Phys., 1955, 23, 57. [all data]

Arcas, Haeusler, et al., 1963
Arcas, Ph.; Haeusler, C.; Joffrin, C.; Meyer, C.; van Thanh, N.; Barchewitz, P., Spectrographie infrarouge a haute resolution: application a l'etude de quelques molecules simples, Appl. Opt., 1963, 2, 909. [all data]

Meyer, Haeusler, et al., 1964
Meyer, C.; Haeusler, C.; Thanh, N.V.; Barchewitz, P., Spectre de vibration-rotation de l'oxyde nitrique NO. Etude de la bande v0→3, J. Phys. (Paris), 1964, 25, 337. [all data]

Olman, McNelis, et al., 1964
Olman, M.D.; McNelis, M.D.; Hause, C.D., Molecular constants of nitric oxide from the near infrared spectrum, J. Mol. Spectrosc., 1964, 14, 62. [all data]

Guerra, Sanchez, et al., 1977
Guerra, M.A.; Sanchez, A.; Javan, A., v = 2 ← 1 Absorption spectroscopy of vibrationally heated NO molecules using optical pumping in a wave guide, Phys. Rev. Lett., 1977, 38, 482. [all data]

Shaw, 1956
Shaw, J.H., Nitric oxide fundamental, J. Chem. Phys., 1956, 24, 399. [all data]

Thompson and Green, 1956
Thompson, H.W.; Green, B.A., The fundamental vibration band of nitric oxide, Spectrochim. Acta, 1956, 8, 129. [all data]

James and Thibault, 1964
James, T.C.; Thibault, R.J., Spin-orbit coupling constant of nitric oxide. Determination from fundamental and satellite band origins, J. Chem. Phys., 1964, 41, 2806. [all data]

Keck and Hause, 1968
Keck, D.B.; Hause, C.D., High resolution study of nitric oxide near 5.4 microns, J. Mol. Spectrosc., 1968, 26, 163. [all data]

Valentin, Boissy, et al., 1976
Valentin, A.; Boissy, J.-P.; Cardinet, P.; Henry, A.; Chen, D.W.; Rao, K.N., Determination, a partir du spectre de la bande fondamentale de NO, des constantes rotationnelles, de couplage spin-orbite et du dedoublement de type Λ pour les niveaux (v=0) et (v=1), C.R. Acad. Sci. Paris, Ser. B, 1976, 283, 233. [all data]

Johns, Reid, et al., 1977
Johns, J.W.C.; Reid, J.; Lepard, D.W., The vibration-rotation fundamental of NO, J. Mol. Spectrosc., 1977, 65, 155. [all data]

Gallagher and Johnson, 1956
Gallagher, J.J.; Johnson, C.M., Uncoupling effects in the microwave spectrum of nitric oxide, Phys. Rev., 1956, 103, 1727. [all data]

Palik and Rao, 1956
Palik, E.D.; Rao, K.N., Pure rotational spectra of CO, NO, and N2O between 100 and 600 microns, J. Chem. Phys., 1956, 25, 1174. [all data]

Favero, Mirri, et al., 1959
Favero, P.G.; Mirri, A.M.; Gordy, W., Millimeter-wave rotational spectrum of NO in the 2Π3/2 state, Phys. Rev., 1959, 114, 1534. [all data]

Hall and Dowling, 1966
Hall, R.T.; Dowling, J.M., Pure rotational spectrum of nitric oxide, J. Chem. Phys., 1966, 45, 1899. [all data]

Renschler, Hunt, et al., 1969
Renschler, D.L.; Hunt, J.L.; McCubbin, T.K., Jr.; Polo, S.R., Rotational Raman spectrum of nitric oxide, J. Mol. Spectrosc., 1969, 32, 347. [all data]

Shotton and Jones, 1970
Shotton, K.C.; Jones, W.J., Rotational Raman spectrum of nitric oxide, Can. J. Phys., 1970, 48, 632. [all data]

Brown and Radford, 1966
Brown, R.L.; Radford, H.E., L-uncoupling effects on the electron-paramagnetic-resonance spectra of N14O16 and N15O16, Phys. Rev., 1966, 147, 6. [all data]

Ashford, Jarke, et al., 1972
Ashford, N.A.; Jarke, F.H.; Solomon, I.J., Gas-phase electron paramagnetic resonance absorption in a N16O, N17O, and N18O mixture, J. Chem. Phys., 1972, 57, 3867. [all data]

Jarke, Ashford, et al., 1976
Jarke, F.H.; Ashford, N.A.; Solomon, I.J., Gas-phase electron paramagnetic resonance absorption in nitric oxide. II. The effects of nitrogen-15 and oxygen-17 and 18 substitution, J. Chem. Phys., 1976, 64, 3097. [all data]

Neumann, 1970
Neumann, R.M., High-precision radiofrequency spectrum of 14N16O, Astrophys. J., 1970, 161, 779. [all data]

Meerts and Dymanus, 1972
Meerts, W.L.; Dymanus, A., The hyperfine Λ-doubling spectrum of 14N16O and 15N16O, J. Mol. Spectrosc., 1972, 44, 320. [all data]

Meerts, 1976
Meerts, W.L., A theoretical reinvestigation of the rotational and hyperfine lambda doubling spectra of diatomic molecules with A2Π state: the spectrum of NO, Chem. Phys., 1976, 14, 421. [all data]

Hertz, Jochims, et al., 1974, 2
Hertz, H.; Jochims, H.W.; Schenk, H.; Sroka, W., The influence of the Rydberg states (2sσ*-1)ndπ and (2sσ*-1)npπσ on the formation of NO+, N+, O+ and N by photon impact on NO, Chem. Phys. Lett., 1974, 29, 572. [all data]

Jungen, 1970
Jungen, C., Rydberg series in the NO spectrum: an interpretation of quantum defects and intensities in the s and d series, J. Chem. Phys., 1970, 53, 4168. [all data]

Kovacs, 1963
Kovacs, I., On the H2Σ+ - H'2Π perturbation of the NO-molecule, Helv. Phys. Acta, 1963, 36, 699. [all data]

Suter, 1969
Suter, R., Absorption spectrum in the vacuum ultraviolet and visible emission spectrum of the NO molecule. The 4d complex, Can. J. Phys., 1969, 47, 881. [all data]

Miescher, 1971
Miescher, E., Absorption spectrum of the NO molecule. X. The 3d Rydberg complex, its vibrational structure, spin-orbit coupling, and interactions with non-Rydberg states, Can. J. Phys., 1971, 49, 2350. [all data]

Jungen and Miescher, 1968
Jungen, Ch.; Miescher, E., Absorption spectrum of the NO molecule. VIII. The heterogeneous (2Σ-2Π) interactions between excited states, Can. J. Phys., 1968, 46, 987. [all data]

Ben-Aryeh, 1973
Ben-Aryeh, Y., Broadening and shifts of molecular spectral lines by predissociation, J. Quant. Spectrosc. Radiat. Transfer, 1973, 13, 1441. [all data]

Roncin, Damany, et al., 1967
Roncin, J.-Y.; Damany, N.; Romand, J., Far ultraviolet absorption spectra of atoms and molecules trapped in rare gas matrices at low temperature, J. Mol. Spectrosc., 1967, 22, 154. [all data]

Miladi, le Falher, et al., 1975
Miladi, M.; le Falher, J.-P.; Roncin, J.-Y.; Damany, H., Pressure effects on the vibronic transitions of NH3 and NO, J. Mol. Spectrosc., 1975, 55, 81. [all data]

Wray, 1969
Wray, K.L., Oscillator strengths of transitions between Rydberg states of nitric oxide in the near IR, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 255. [all data]

Groth, Kley, et al., 1971
Groth, W.; Kley, D.; Schurath, U., Rate constant for the infrared emission of the NO(C2Π → A2Σ+) transition, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1475. [all data]

Gallusser and Dressler, 1971
Gallusser, R.; Dressler, K., Application of the coulomb approximation to the Rydberg transitions of the NO molecule, Z. Angew. Math. Phys., 1971, 22, 792. [all data]

Johnson, Berman, et al., 1975
Johnson, P.M.; Berman, M.R.; Zakheim, D., Nonresonant multiphoton ionization spectroscopy: the four-photon ionization spectrum of nitric oxide, J. Chem. Phys., 1975, 62, 2500. [all data]

Miescher, 1974
Miescher, E., The fine structure of the spectrum of the electronic NO laser, J. Mol. Spectrosc., 1974, 53, 302. [all data]

Ortenberg and Antropov, 1967
Ortenberg, F.S.; Antropov, E.T., Probability of electron-vibrational transitions in diatomic molecules, Sov. Phys. Usp. Engl. Transl., 1967, 9, 717, In original 237. [all data]

Jungen, 1966
Jungen, Ch., Vacuum-ultraviolet emission and absorption spectrum of the NO molecule: the 2Δ states and their interactions, Can. J. Phys., 1966, 44, 3197. [all data]

Felenbok and Lefebvre-Brion, 1966
Felenbok, P.; Lefebvre-Brion, H., Etude theorique des perturbations homogenes. I. Application aux interactions Π-Π et Δ-Δ de NO, Can. J. Phys., 1966, 44, 1677. [all data]

Field, Gottscho, et al., 1975
Field, R.W.; Gottscho, R.A.; Miescher, E., Observed and calculated interactions between valence states of the NO molecule, J. Mol. Spectrosc., 1975, 58, 394. [all data]

Huber, 1964, 2
Huber, M., Laser transition with predissociating lower state in the NO molecule, Phys. Lett., 1964, 12, 102. [all data]

Jungen, Miescher, et al., 1966
Jungen, Ch.; Miescher, E.; Suter, R., Level crossings C2Π ~ B2Π and F2Δ ~ B'2Δ and the lasering combination transition B'2Δ - C2Π of the NO-molecule, Phys. Lett., 1966, 21, 36. [all data]

Broida and Miescher, 1973
Broida, H.P.; Miescher, E., Near-infrared 2Δ - 2Π nitric oxide laser with predissociated lower state, IEEE J. Quantum Electron., 1973, 9, 1029. [all data]

Brzozowski, Elander, et al., 1974
Brzozowski, J.; Elander, N.; Erman, P., Direct measurements of lifetimes of low-lying excited electronic states in nitric oxide, Phys. Scr., 1974, 9, 99. [all data]

Roncin, 1968
Roncin, J.-Y., Electronic transitions of CO, N2 and NO molecules trapped in solid rare gas matrices: qualitative discussion, J. Mol. Spectrosc., 1968, 26, 105. [all data]

Boursey, 1976
Boursey, E., High resolution spectroscopy of the electronic excitation of NO trapped in rare gas matrices. The B'2Δ and G2Σ ← X2Π systems, J. Mol. Spectrosc., 1976, 61, 11. [all data]

Hesser, 1968
Hesser, J.E., Absolute Transition Probabilities in Ultraviolet Molecular Spectra, J. Chem. Phys., 1968, 48, 6, 2518, https://doi.org/10.1063/1.1669477 . [all data]

Benoist D'Azy, Lopez-Delgado, et al., 1975
Benoist D'Azy, O.; Lopez-Delgado, R.; Tramer, A., No fluorescence decay from low-lying electronic states excited into single vibronic levels with synchrotron radiation, Chem. Phys., 1975, 9, 327. [all data]

Bethke, 1959
Bethke, G.W., Oscillator strengths in the far ultraviolet. I. Nitric oxide, J. Chem. Phys., 1959, 31, 662. [all data]

Ory, 1964
Ory, H.A., Franck-Condon factors and electronic oscillator strengths for nitric oxide ultraviolet bnd systems, J. Chem. Phys., 1964, 40, 562. [all data]

Callear and Pilling, 1970
Callear, A.B.; Pilling, M.J., Fluorescence of nitric oxide. Part 6. Predissociation and cascade quenching in NO D2Σ+(v = O) and NO C2Π(v = O), and the oscillator strengths of the ε(0,0) and δ(0,0) bands, Trans. Faraday Soc., 1970, 66, 1886. [all data]

Ackermann and Miescher, 1968
Ackermann, F.; Miescher, E., Spin-orbit coupling in molecular Rydberg states of the nitric oxide molecule, Chem. Phys. Lett., 1968, 2, 351. [all data]

Dingle, Freedman, et al., 1975
Dingle, T.W.; Freedman, P.A.; Gelernt, B.; Jones, W.J.; Smith, I.W.M., NO(C2Π-A2Σ+) emission during the radiative recombination of N and O atoms, Chem. Phys., 1975, 8, 171. [all data]

Mandelman and Carrington, 1974
Mandelman, M.; Carrington, T., The f-value of the NO δ(0, 0) band by the line absorption method, J. Quant. Spectrosc. Radiat. Transfer, 1974, 14, 509. [all data]

Jain and Sahni, 1968
Jain, D.C.; Sahni, R.C., Quantum mechanical treatment of molecules. Part 4. RKR Franck-Condon factors for the γ and β band systems of the NO molecule, Trans. Faraday Soc., 1968, 64, 3169. [all data]

Generosa and Harris, 1970
Generosa, J.I.; Harris, R.A., Effects of high rotational quantum numbers on Rydberg-Klein-Rees Franck-Condon factors: the nitric oxide (NO) beta band system, J. Chem. Phys., 1970, 53, 3147. [all data]

Spindler, Isaacson, et al., 1970
Spindler, R.J., Jr.; Isaacson, L.; Wentink, T., Jr., Franck-Condon factors and r-centroids for the gamma system of NO, J. Quant. Spectrosc. Radiat. Transfer, 1970, 10, 621. [all data]

Gilmore, 1965
Gilmore, F.R., Potential energy curves for N2, NO, O2 and corresponding ions, J. Quant. Spectry. Radiative Transfer, 1965, 5, 369. [all data]

Callear and Smith, 1965
Callear, A.B.; Smith, W.M., The (0,0), (2,0) and (3,0) bands of the β-system of NO, Trans. Faraday Soc., 1965, 61, 1303. [all data]

Deezsi, 1960
Deezsi, I., β-bands of the upper vibration state No 7 in the spectrum of the NO molecule, Acta Phys. Acad. Sci. Hung., 1960, 11, 155. [all data]

Ackermann and Miescher, 1969
Ackermann, F.; Miescher, E., High resolution study of the C2Π-X2Π emission bands of the NO molecule, J. Mol. Spectrosc., 1969, 31, 400. [all data]

Bartholdi, Leoni, et al., 1971
Bartholdi, E.; Leoni, M.; Dressler, K., Vibronic interaction matrix for the states B2Π + C2Π of NO, Z. Angew. Math. Phys., 1971, 22, 797. [all data]

Boursey and Roncin, 1975
Boursey, E.; Roncin, J.-Y., High resolution spectroscopy of the electronic excitation of NO trapped in rare gas matrices. The B2Π ← X2Π system, J. Mol. Spectrosc., 1975, 55, 31. [all data]

Jeunehomme and Duncan, 1964
Jeunehomme, M.; Duncan, A.B.F., Lifetime measurements of some excited states of nitrogen, nitric oxide, and formaldehyde, J. Chem. Phys., 1964, 41, 1692. [all data]

Hasson and Nicholls, 1971
Hasson, V.; Nicholls, R.W., Absolute spectral absorption measurements of the NO-β(B2Π-X2Π) band system of nitric oxide, J. Phys. B:, 1971, 4, 1769. [all data]

Farmer, Hasson, et al., 1972
Farmer, A.J.D.; Hasson, V.; Nicholls, R.W., Absolute oscillator strength measurements of the (v" = 0, v' = 0-3) bands of the (A2Σ-X2Π) γ-system of nitric oxide, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 627. [all data]

Antropov, Dronov, et al., 1964
Antropov, E.T.; Dronov, A.P.; Sobolev, N.N., Experimental determination of the matrix element of the electronic transition dipole moment in the β and γ band systems of nitric oxide. II, Opt. Spectrosc. Engl. Transl., 1964, 17, 355, In original 654. [all data]

Marr, 1964
Marr, G.V., Electronic transition moments and their effects on the band strengths and absorption oscillator strengths of the NO β and γ systems, Proc. Phys. Soc. London, 1964, 83, 293. [all data]

Antropov, 1968
Antropov, E.T., Experimental determination of the dipole moment of transition of the γ and β systems of nitric oxide, Proc. Tr. P. N. Lebedev Phys. Inst. Acad. Sci. USSR Engl. Transl., 1968, 35, 1-68. [all data]

Woods and Dixon, 1976
Woods, R.C.; Dixon, T.A., Comment on the quadrupole coupling constants in the A2Σ+ states of OD and NO, J. Chem. Phys., 1976, 64, 5319. [all data]

Bergeman and Zare, 1974
Bergeman, T.; Zare, R.N., Fine structure, hyperfine structure, and Stark effect in the NO A2Σ+ state by optical radio-frequency double resonance, J. Chem. Phys., 1974, 61, 4500. [all data]

Green, 1972
Green, S., Calculated properties for NO X2Π and A2Σ+, Chem. Phys. Lett., 1972, 13, 552. [all data]

Walch and Goddard, 1975
Walch, S.P.; Goddard, W.A., III, Dipole moments and electric field gradients for correlated wavefunctions of NO: the X2Π, A2Σ+, and D2Σ+ states, Chem. Phys. Lett., 1975, 33, 18. [all data]

German, Zare, et al., 1971
German, K.R.; Zare, R.N.; Crosley, D.R., Reinvestigation of the Hanle effect for the NO A2Σ+ state, J. Chem. Phys., 1971, 54, 4039. [all data]

Gouedard, 1972
Gouedard, G., Resonance optique et effet hanle sur la molecule NO, Ann. Phys. (Paris), 1972, 7, 159. [all data]

Weinstock, Zare, et al., 1972
Weinstock, E.M.; Zare, R.N.; Melton, L.A., Lifetime determination of the NO A2Σ+ state, J. Chem. Phys., 1972, 56, 3456. [all data]

Deezsi, 1959
Deezsi, I., A recent rotational analysis of the γ bands of the NO molecule, Acta Phys. Acad. Sci. Hung., 1959, 9, 125. [all data]

Zacharias, Halpern, et al., 1976
Zacharias, H.; Halpern, J.B.; Welge, K.H., Two-photon excitation of NO(A2Σ+; v' = 0, 1, 2) and radiation lifetime and quenching measurements, Chem. Phys. Lett., 1976, 43, 41. [all data]

Jeunehomme, 1966
Jeunehomme, M., Transition-moment variation in the γ system of NO, J. Chem. Phys., 1966, 45, 4433. [all data]

Weber and Penner, 1957
Weber, D.; Penner, S.S., Absolute intensities for the ultraviolet γ bands of NO, J. Chem. Phys., 1957, 26, 860. [all data]

Pery-Thorne and Banfield, 1970
Pery-Thorne, A.; Banfield, F.P., Absolute oscillator strength of the (0,0) band of the gamma system of nitric oxide by the hook method, J. Phys. B:, 1970, 3, 1011. [all data]

Hasson, Farmer, et al., 1972
Hasson, V.; Farmer, A.J.D.; Nicholls, R.W.; Anketell, J., Application of dispersion techniques to molecular band intensity measurements. II. Oscillator strength of the (0,0) band of NO-γ(A2Σ-x2Π) system, J. Phys. B:, 1972, 5, 1248. [all data]

Callear, Pilling, et al., 1966
Callear, A.B.; Pilling, M.J.; Smith, I.W.M., Dependence on the r-centroid of the band-intensities of the γ system of nitric oxide, Trans. Faraday Soc., 1966, 62, 2997. [all data]

Antropov, Kolesnikov, et al., 1967
Antropov, E.T.; Kolesnikov, V.N.; Ostrovskaya, L.Ya.; Sobolev, N.N., Dipole moment of the γ-band system of NO as a function of the internuclear distance of transition, Opt. Spectrosc. Engl. Transl., 1967, 22, 109, In original 203. [all data]

Bubert, 1972
Bubert, H., Population and predissociation of vibronic states of nitric oxide, J. Chem. Phys., 1972, 56, 1113. [all data]

Bray, Hochstrasser, et al., 1974
Bray, R.G.; Hochstrasser, R.M.; Wessel, J.E., Continuously tunable two-photon excitation of individual rotational levels of the A2Σ+ state of nitric oxide, Chem. Phys. Lett., 1974, 27, 167. [all data]

Bray, Hochstrasser, et al., 1975
Bray, R.G.; Hochstrasser, R.M.; Sung, H.N., Two-photon excitation spectra of molecular gases: new results for benzene and nitric oxide, Chem. Phys. Lett., 1975, 33, 1. [all data]

Robinson, 1967
Robinson, D.W., Magnetic rotation spectrum of the A2Σ+ ← X2Πr transition in NO. I., J. Chem. Phys., 1967, 46, 4525. [all data]

Cisak, Danielak, et al., 1970
Cisak, H.; Danielak, J.; Rytel, M., Vibrational isotope effect in γ system of 15N16O molecule, Acta Phys. Pol., 1970, 37, 67. [all data]

Lefebvre-Brion and Guerin, 1968
Lefebvre-Brion, H.; Guerin, F., Calculation of the radiative lifetime of the α4Π state of NO, J. Chem. Phys., 1968, 49, 1446. [all data]

Zarur and Chiu, 1973
Zarur, G.L.; Chiu, Y.-N., Cooperative optical phenomena. II. Spin-forbidden lifetime of a4Π state of nitric oxide, J. Chem. Phys., 1973, 59, 82. [all data]

Mizushima, Evenson, et al., 1972
Mizushima, M.; Evenson, K.M.; Wells, J.S., Laser magnetic resonance of the NO molecule using 78-, 79-, and 119-μm H2O laser lines, Phys. Rev. A: Gen. Phys., 1972, 5, 2276. [all data]

Brook and Kaplan, 1954
Brook, M.; Kaplan, J., Dissociation energy of NO and N2, Phys. Rev., 1954, 96, 1540. [all data]

Hakuta and Uehara, 1975
Hakuta, K.; Uehara, H., Laser magnetic resonance for the v = 1 ← 0 transition of NO (2Π3/2) by CO laser, J. Mol. Spectrosc., 1975, 58, 316. [all data]

Rasetti, 1930
Rasetti, F., Uber das Ramanspektrum des stickoxyds, Z. Phys., 1930, 66, 646. [all data]

Fast, Welsh, et al., 1969
Fast, H.; Welsh, H.L.; Lepard, D.W., Electronic Raman effect of nitric oxide at high resolution, Can. J. Phys., 1969, 47, 2879. [all data]

Lepard, 1970
Lepard, D.W., Theoretical calculations of electronic Raman effects of the NO and O2 molecules, Can. J. Phys., 1970, 48, 1664. [all data]

Mann and Hause, 1960
Mann, G.A.; Hause, C.D., Magnetic rotation spectra of nitric oxide in the near infrared, J. Chem. Phys., 1960, 33, 1117. [all data]

Aubel and Hause, 1966
Aubel, J.L.; Hause, C.D., Magnetic-rotation spectra of the 2-0 vibration-rotation band of NO, J. Chem. Phys., 1966, 44, 2659. [all data]

Buckingham and Segal, 1968
Buckingham, A.D.; Segal, G.A., Calculation of the magnetic rotation spectrum of NO in the near infrared, J. Chem. Phys., 1968, 49, 1964. [all data]

Keck and Hause, 1968, 2
Keck, D.B.; Hause, C.D., Magnetic-rotation spectra of the 1-0 vibration-rotation band of nitric oxide, J. Chem. Phys., 1968, 49, 3458. [all data]

Blum, Nill, et al., 1973
Blum, F.A.; Nill, K.W.; Strauss, A.J., Line shape of the Doppler-limited infrared magnetic rotation spectrum of nitric oxide, J. Chem. Phys., 1973, 58, 4968. [all data]

Schurin and Ellis, 1966
Schurin, B.; Ellis, R.E., First- and second-overtone intensity measurements for CO and NO, J. Chem. Phys., 1966, 45, 2528. [all data]

Michels, 1971
Michels, H.H., Calculation of the integrated band intensities of NO, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1735. [all data]

Chandraiah and Cho, 1973
Chandraiah, G.; Cho, C.W., A study of the fundamental and first overtone bands of NO in NO-rare gas mixtures at pressures up to 10,000 PSI, J. Mol. Spectrosc., 1973, 47, 134. [all data]

Konkov and Vorontsov, 1973
Konkov, A.A.; Vorontsov, A.V., Total emission of the fundamental NO band at high temperatures, Opt. Spectrosc. Engl. Transl., 1973, 34, 595, In original 1026. [all data]

Billingsley, 1975
Billingsley, F.P., II, Multiconfiguration self-consistent-field calculation of the dipole moment function and potential curve of NO(X2Π), J. Chem. Phys., 1975, 62, 864. [all data]

Billingsley, 1976
Billingsley, F.P., II, Calculated vibration-rotation intensities for NO(X2Π), J. Mol. Spectrosc., 1976, 61, 53. [all data]

Griggs and Rao, 1967
Griggs, J.L., Jr.; Rao, K.N., Vibration rotation bands of 15N18O, J. Mol. Spectrosc., 1967, 22, 383. [all data]

Fletcher and Begun, 1957
Fletcher, W.H.; Begun, G.M., Fundamental of N15O, J. Chem. Phys., 1957, 27, 579. [all data]

Blum, Nill, et al., 1972
Blum, F.A.; Nill, K.W.; Calawa, A.R.; Harman, T.C., Observation of nuclear hyperfine splitting in the infrared vibration-rotation absorption spectrum of the NO molecule, Chem. Phys. Lett., 1972, 15, 144. [all data]

Nill, Blum, et al., 1972
Nill, K.W.; Blum, F.A.; Calawa, A.R.; Harman, T.C., Observation of Λ-doubling and Zeeman splitting in the fundamental infrared absorption band of nitric oxide, Chem. Phys. Lett., 1972, 14, 234. [all data]

Zeiger, Blum, et al., 1973
Zeiger, H.J.; Blum, F.A.; Nill, K.W., Observation of strong nonlinearities in the high field Zeeman spectrum of NO at 1876 cm-1, J. Chem. Phys., 1973, 59, 3968. [all data]

Hoy, Johns, et al., 1975
Hoy, A.R.; Johns, J.W.C.; McKellar, A.R.W., Stark spectroscopy with the CO laser: dipole moments, hyperfine structure, and level crossing effects in the fundamental band of NO, Can. J. Phys., 1975, 53, 2029. [all data]

Tejwani, Golden, et al., 1976
Tejwani, G.D.T.; Golden, B.M.; Yeung, E.S., Pressure-broadened linewidths of nitric oxide, J. Chem. Phys., 1976, 65, 5110. [all data]

Richton, 1976
Richton, R.E., NO line parameters measured by CO laser transmittance, Appl. Opt., 1976, 15, 1686. [all data]

Hanson, Monat, et al., 1976
Hanson, R.K.; Monat, J.P.; Kruger, C.H., Absorption of CO laser radiation by NO, J. Quant. Spectrosc. Radiat. Transfer, 1976, 16, 705. [all data]

Garside, Ballik, et al., 1977
Garside, B.K.; Ballik, E.A.; Elsherbiny, M.; Shewchun, J., Resonance absorption measurements of NO with a line-tunable CO laser: spectroscopic data for pollution monitoring, Appl. Opt., 1977, 16, 398. [all data]

Mantz, Shafer, et al., 1976
Mantz, A.W.; Shafer, S.A.; Rao, K.N., Emission spectrum of nitric oxide between 5 μm and 7 μm, Appl. Opt., 1976, 15, 599. [all data]

Deutsch, 1966
Deutsch, T.F., No molecular laser, Appl. Phys. Lett., 1966, 9, 295. [all data]

Mizushima, Cox, et al., 1955
Mizushima, M.; Cox, J.T.; Gordy, W., Zeeman effect in the rotational spectrum of NO, Phys. Rev., 1955, 98, 1034. [all data]

Burrus and Graybeal, 1958
Burrus, C.A.; Graybeal, J.D., Stark effect at 2.0 and 1.2 millimeters wavelength: nitric oxide, Phys. Rev., 1958, 109, 1553. [all data]

Mandelman, Carrington, et al., 1973
Mandelman, M.; Carrington, T.; Young, R.A., Predissociation and its inverse, using resonance absorption NO(C2Π) = N + O, J. Chem. Phys., 1973, 58, 84. [all data]

Callear and Pilling, 1970, 2
Callear, A.B.; Pilling, M.J., Fluorescence of nitric oxide. Part 7. Quenching rates of NO C2Π(v = O), its rate of radiation to NO A2Σ+, energy transfer efficiencies, and mechanisms of predissociation, Trans. Faraday Soc., 1970, 66, 1618. [all data]

Miescher, 1974, 2
Miescher, E., The Rydberg series of the NO molecule converging to the first ionization limit 1340 Å in Vacuum ultraviolet radiation physics, Koch, Haensel, Kunz, ed(s)., Pergamon-Veiweg, Braunschweig, 1974, 61-63. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References