Hydrogen iodide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Iodide + Hydrogen iodide = (Iodide • Hydrogen iodide)

By formula: I- + HI = (I- • HI)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr71.1 ± 8.4kJ/molTDEqCaldwell and Kebarle, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; switching reaction(I-)SO2; M
Quantity Value Units Method Reference Comment
Δr41. ± 11.kJ/molTDEqCaldwell and Kebarle, 1985gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
41.300.PHPMSCaldwell and Kebarle, 1985gas phase; switching reaction(I-)SO2; M

Iodide + Hydrogen cation = Hydrogen iodide

By formula: I- + H+ = HI

Quantity Value Units Method Reference Comment
Δr1315.24 ± 0.084kJ/molD-EAPelaez, Blondel, et al., 2009gas phase; Given: 3.0590463(38) eV; B
Δr1312.1kJ/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)2-(q); ; ΔS(EA)=5.0; B
Quantity Value Units Method Reference Comment
Δr1294.03 ± 0.25kJ/molH-TSPelaez, Blondel, et al., 2009gas phase; Given: 3.0590463(38) eV; B
Δr1290.8kJ/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)2-(q); ; ΔS(EA)=5.0; B

Hydrogen iodide + 1-Propene, 3-iodo- = Propene + Iodine

By formula: HI + C3H5I = C3H6 + I2

Quantity Value Units Method Reference Comment
Δr-33.3 ± 1.4kJ/molEqkRodgers, Golden, et al., 1966gas phase; ALS
Δr-39.7 ± 4.2kJ/molEqkRodgers, Golden, et al., 1966gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -34.9 ± 0.96 kJ/mol; At 527 K; ALS

Hydrogen iodide + Methane, iodo- = Methane + Iodine

By formula: HI + CH3I = CH4 + I2

Quantity Value Units Method Reference Comment
Δr-52.55 ± 0.54kJ/molEqkGolden, Walsh, et al., 1965gas phase; ALS
Δr-53.0 ± 0.2kJ/molEqkGoy and Pritchard, 1965gas phase; ALS
Δr-46.2 ± 5.6kJ/molCmNichol and Ubbelohde, 1952gas phase; ALS

Hydromanganese pentacarbonyl (l) + Iodine (cr) = Hydrogen iodide (g) + Manganese, pentacarbonyliodo- (cr)

By formula: C5HMnO5 (l) + I2 (cr) = HI (g) + C5IMnO5 (cr)

Quantity Value Units Method Reference Comment
Δr-108. ± 8.kJ/molRSCConnor, Zafarani-Moattar, et al., 1982The reaction enthalpy relies on -25. ± 5. kJ/mol for the enthalpy of solution of HI(g) in benzene Connor, Zafarani-Moattar, et al., 1982.; MS

Acetyl iodide + Water = Hydrogen iodide + Acetic acid

By formula: C2H3IO + H2O = HI + C2H4O2

Quantity Value Units Method Reference Comment
Δr-93.97kJ/molCmDevore and O'Neal, 1969liquid phase; Heat of hydrolysis; ALS
Δr-90.33kJ/molCmCarson and Skinner, 1949liquid phase; Heat of hydrolysis; ALS

tert-Butyl iodide = Hydrogen iodide + 1-Propene, 2-methyl-

By formula: C4H9I = HI + C4H8

Quantity Value Units Method Reference Comment
Δr-81. ± 2.kJ/molEqkBenson and Amano, 1962gas phase; ALS
Δr-80.1 ± 4.2kJ/molEqkJones and Ogg, 1937gas phase; At 408-464 K; ALS

Hydrogen iodide + Cyclohexane, iodo- = Cyclohexane + Iodine

By formula: HI + C6H11I = C6H12 + I2

Quantity Value Units Method Reference Comment
Δr-32.6 ± 8.4kJ/molCmBrennan and Ubbelohde, 1956gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28. ± 4.2 kJ/mol; ALS

Ethane, 1,1,1-trifluoro- + Iodine = Hydrogen iodide + 1,1,1-Trifluoro-2-iodoethane

By formula: C2H3F3 + I2 = HI + C2H2F3I

Quantity Value Units Method Reference Comment
Δr-64. ± 2.kJ/molEqkWu and Rodgers, 1974gas phase; Heat of formation Unpublished results by B.J. Zwolinski; ALS

Benzenamine, 4-methoxy- + Benzoyl iodide = Hydrogen iodide + p-Benzanisidide

By formula: C7H9NO + C7H5IO = HI + C14H13NO2

Quantity Value Units Method Reference Comment
Δr-185. ± 2.kJ/molCacKiselev, Khuzyasheva, et al., 1979liquid phase; solvent: Benzene; ALS

p-Aminotoluene + Benzoyl iodide = Hydrogen iodide + Benzamide, N-(4-methylphenyl)-

By formula: C7H9N + C7H5IO = HI + C14H13NO

Quantity Value Units Method Reference Comment
Δr-168. ± 2.kJ/molCacKiselev, Khuzyasheva, et al., 1979liquid phase; solvent: Benzene; ALS

Benzoyl iodide + Aniline = Hydrogen iodide + Benzamide, N-phenyl-

By formula: C7H5IO + C6H7N = HI + C13H11NO

Quantity Value Units Method Reference Comment
Δr-166. ± 2.kJ/molCacKiselev, Khuzyasheva, et al., 1979liquid phase; solvent: Benzene; ALS

Tungsten, tricarbonyl(η5-2,4-cyclopentadien-1-yl)hydro- (cr) + Iodine (solution) = Hydrogen iodide (solution) + C8H5IO3W (solution)

By formula: C8H6O3W (cr) + I2 (solution) = HI (solution) + C8H5IO3W (solution)

Quantity Value Units Method Reference Comment
Δr-67.4 ± 3.8kJ/molRSCLandrum and Hoff, 1985solvent: Dichloromethane; MS

C8H6MoO3 (cr) + Iodine (solution) = C8H5IMoO3 (solution) + Hydrogen iodide (solution)

By formula: C8H6MoO3 (cr) + I2 (solution) = C8H5IMoO3 (solution) + HI (solution)

Quantity Value Units Method Reference Comment
Δr-75.3 ± 2.5kJ/molRSCLandrum and Hoff, 1985solvent: Dichloromethane; MS

2Propyl mercaptan + Iodine = 2Hydrogen iodide + Disulfide, dipropyl

By formula: 2C3H8S + I2 = 2HI + C6H14S2

Quantity Value Units Method Reference Comment
Δr-124.9kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

21-Pentanethiol + Iodine = 2Hydrogen iodide + Disulfide, dipentyl

By formula: 2C5H12S + I2 = 2HI + C10H22S2

Quantity Value Units Method Reference Comment
Δr-124.9kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

1,4-Butanedithiol + Iodine = 2Hydrogen iodide + 1,2-Dithiane

By formula: C4H10S2 + I2 = 2HI + C4H8S2

Quantity Value Units Method Reference Comment
Δr-123.2kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

Octanoic acid, 6,8-dimercapto- + Iodine = 2Hydrogen iodide + Thioctic acid

By formula: C8H16O2S2 + I2 = 2HI + C8H14O2S2

Quantity Value Units Method Reference Comment
Δr-109.6kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

1,3-Propanedithiol + Iodine = 2Hydrogen iodide + 1,2-Dithiolane

By formula: C3H8S2 + I2 = 2HI + C3H6S2

Quantity Value Units Method Reference Comment
Δr-107.7kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

Hydrogen iodide + Benzene, (iodomethyl)- = Toluene + Iodine

By formula: HI + C7H7I = C7H8 + I2

Quantity Value Units Method Reference Comment
Δr-33. ± 4.6kJ/molCmGraham, Nichol, et al., 1955liquid phase; solvent: p-Xylene; ALS

1-Propene, 3-iodo- + Water = Hydrogen iodide + 2-Propen-1-ol

By formula: C3H5I + H2O = HI + C3H6O

Quantity Value Units Method Reference Comment
Δr-8.79kJ/molCmGellner and Skinner, 1949liquid phase; Heat of hydrolysis; ALS

Benzene, (iodomethyl)- + Water = Hydrogen iodide + Benzyl alcohol

By formula: C7H7I + H2O = HI + C7H8O

Quantity Value Units Method Reference Comment
Δr-12.6kJ/molCmGellner and Skinner, 1949liquid phase; Heat of hydrolysis; ALS

Benzoyl iodide + Water = Hydrogen iodide + Benzoic acid

By formula: C7H5IO + H2O = HI + C7H6O2

Quantity Value Units Method Reference Comment
Δr-102.4kJ/molCmCarson, Pritchard, et al., 1950liquid phase; Heat of hydrolysis; ALS

C3H9ISn (l) + Water (l) = (Hydrogen iodide • 55Water) (solution) + C3H10OSn (cr)

By formula: C3H9ISn (l) + H2O (l) = (HI • 55H2O) (solution) + C3H10OSn (cr)

Quantity Value Units Method Reference Comment
Δr-17.6 ± 0.4kJ/molRSCBaldwin, Lappert, et al., 1972MS

Hydrogen iodide + Methylsulfenyliodide = Methanethiol + Iodine

By formula: HI + CH3IS = CH4S + I2

Quantity Value Units Method Reference Comment
Δr-12.0 ± 2.3kJ/molEqkShum and Benson, 1983gas phase; ALS

Acetone + Iodine = Hydrogen iodide + 1-iodoacetone

By formula: C3H6O + I2 = HI + C3H5IO

Quantity Value Units Method Reference Comment
Δr50.6 ± 5.0kJ/molEqkSolly, Golden, et al., 1970gas phase; ALS

Acetaldehyde + Iodine = Hydrogen iodide + Acetyl iodide

By formula: C2H4O + I2 = HI + C2H3IO

Quantity Value Units Method Reference Comment
Δr3. ± 2.kJ/molEqkWalsh and Benson, 1966gas phase; ALS

Hydrogen iodide + p-Iodoanisole = Anisole + Iodine

By formula: HI + C7H7IO = C7H8O + I2

Quantity Value Units Method Reference Comment
Δr-29. ± 5.0kJ/molCmBrennan and Ubbelohde, 1956gas phase; ALS

Hydrogen iodide + Iodomethyl methyl sulfide = Dimethyl sulfide + Iodine

By formula: HI + C2H5IS = C2H6S + I2

Quantity Value Units Method Reference Comment
Δr-28. ± 4.6kJ/molKinShum and Benson, 1985gas phase; ALS

C10H12W (cr) + 2Iodine (cr) = C10H10I2W (cr) + 2Hydrogen iodide (g)

By formula: C10H12W (cr) + 2I2 (cr) = C10H10I2W (cr) + 2HI (g)

Quantity Value Units Method Reference Comment
Δr-104.3 ± 5.5kJ/molRSCCalado, Dias, et al., 1979MS

Hydrogen iodide + Benzoyl iodide = Benzaldehyde + Iodine

By formula: HI + C7H5IO = C7H6O + I2

Quantity Value Units Method Reference Comment
Δr-13. ± 4.2kJ/molEqkSolly and Benson, 1971gas phase; ALS

C10H11ClZr (cr) + Iodine (cr) = C10H10ClIZr (cr) + Hydrogen iodide (g)

By formula: C10H11ClZr (cr) + I2 (cr) = C10H10ClIZr (cr) + HI (g)

Quantity Value Units Method Reference Comment
Δr-78.1 ± 2.4kJ/molRSCDiogo, Simoni, et al., 1993MS

C10H12Mo (cr) + 2Iodine (cr) = C10H10I2Mo (cr) + 2Hydrogen iodide (g)

By formula: C10H12Mo (cr) + 2I2 (cr) = C10H10I2Mo (cr) + 2HI (g)

Quantity Value Units Method Reference Comment
Δr-87.8 ± 5.1kJ/molRSCCalado, Dias, et al., 1979MS

Ethane, 1,1-difluoro- + Iodine = Hydrogen iodide + 1-Bromo-1,1-difluoroethane

By formula: C2H4F2 + I2 = HI + C2H3BrF2

Quantity Value Units Method Reference Comment
Δr51.0 ± 0.8kJ/molEqkPickard and Rodgers, 1977gas phase; ALS

Benzaldehyde + Iodine = Hydrogen iodide + Benzoyl iodide

By formula: C7H6O + I2 = HI + C7H5IO

Quantity Value Units Method Reference Comment
Δr13. ± 4.2kJ/molEqkSolly and Benson, 1971gas phase; ALS

Hydrogen iodide + Benzene, iodo- = Benzene + Iodine

By formula: HI + C6H5I = C6H6 + I2

Quantity Value Units Method Reference Comment
Δr-22. ± 5.9kJ/molCmGraham, Nichol, et al., 1955gas phase; ALS

C10H11IW (cr) + Iodine (cr) = C10H10I2W (cr) + Hydrogen iodide (g)

By formula: C10H11IW (cr) + I2 (cr) = C10H10I2W (cr) + HI (g)

Quantity Value Units Method Reference Comment
Δr-84.6 ± 4.1kJ/molRSCCalhorda, Dias, et al., 1987MS

Iodine atom (g) + Germane (g) = Hydrogen iodide (g) + Germyl radical (g)

By formula: I (g) + H4Ge (g) = HI (g) + H3Ge (g)

Quantity Value Units Method Reference Comment
Δr47.0 ± 4.1kJ/molKinGNoble and Walsh, 1983MS

Cyclopentane + Iodine = 2Hydrogen iodide + Cyclopentene

By formula: C5H10 + I2 = 2HI + C5H8

Quantity Value Units Method Reference Comment
Δr102.1kJ/molEqkFuruyama, Golden, et al., 1970gas phase; ALS

Hydrogen iodide + 3-Iodo-2-butanone = Iodine + 2-Butanone

By formula: HI + C4H7IO = I2 + C4H8O

Quantity Value Units Method Reference Comment
Δr-42.7kJ/molKinSolly, Golden, et al., 1970, 2gas phase; ALS

2Hydrogen iodide + 1,3-Cyclopentadiene = Cyclopentene + Iodine

By formula: 2HI + C5H6 = C5H8 + I2

Quantity Value Units Method Reference Comment
Δr-89.5kJ/molEqkFuruyama, Golden, et al., 1970gas phase; ALS

Hydrogen iodide + Propene = Propane, 2-iodo-

By formula: HI + C3H6 = C3H7I

Quantity Value Units Method Reference Comment
Δr-86.27kJ/molEqkFuruyama, Golden, et al., 1969gas phase; ALS

Iodine atom (g) + C3H10Ge (g) = C3H9Ge (g) + Hydrogen iodide (g)

By formula: I (g) + C3H10Ge (g) = C3H9Ge (g) + HI (g)

Quantity Value Units Method Reference Comment
Δr42.0 ± 1.8kJ/molKinGDoncaster and Walsh, 1979MS

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Caldwell and Kebarle, 1985
Caldwell, G.; Kebarle, P., The hydrogen bond energies of the bihalide ions XHX- and YHX-, Can. J. Chem., 1985, 63, 1399. [all data]

Pelaez, Blondel, et al., 2009
Pelaez, R.J.; Blondel, C.; Delsart, C.; Drag, C., Pulsed photodetachment microscopy and the electron affinity of iodine, J. Phys. B: Atom. Mol. Opt. Phys., 2009, 42, 12, 125001, https://doi.org/10.1088/0953-4075/42/12/125001 . [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Rodgers, Golden, et al., 1966
Rodgers, A.S.; Golden, D.M.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + C3H6 = C3H5I + HI, J. Am. Chem. Soc., 1966, 88, 3194-3196. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical, J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]

Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O., Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide, J. Phys. Chem., 1965, 69, 3040-3041. [all data]

Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2, J. Am. Chem. Soc., 1952, 415-421. [all data]

Connor, Zafarani-Moattar, et al., 1982
Connor, J.A.; Zafarani-Moattar, M.T.; Bickerton, J.; El-Saied, N.I.; Suradi, S.; Carson, R.; Al Takkhin, G.; Skinner, H.A., Organomet., 1982, 1, 1166. [all data]

Devore and O'Neal, 1969
Devore, J.A.; O'Neal, H.E., Heats of formation of the acetyl halides and of the acetyl radical, J. Phys. Chem., 1969, 73, 2644-2648. [all data]

Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A., 201. Carbon-halogen bond energies in the acetyl halides, J. Chem. Soc., 1949, 936-939. [all data]

Benson and Amano, 1962
Benson, S.W.; Amano, A., Thermodynamic properties of tertiary iodides, J. Chem. Phys., 1962, 37, 197-198. [all data]

Jones and Ogg, 1937
Jones, J.L.; Ogg, R.A., Jr., The equilibrium (CH3)3CI = (CH3)2C = CH2 + HI, J. Am. Chem. Soc., 1937, 59, 1943-1945. [all data]

Brennan and Ubbelohde, 1956
Brennan, D.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. Part IV. Bond-strength differences based on the reaction: RI + HI = RH + I2, where R = p-methoxyphenyl and cyclohexyl, J. Chem. Soc., 1956, 3011-3016. [all data]

Wu and Rodgers, 1974
Wu, E.; Rodgers, A.S., Thermochemistry of gas-phase equilibrium CF3CH3 + I2 = CF3CH2I + HI. The carbon-hydrogen bond dissociation energy in 1,1,1-trifluoroethane and the heat of formation of the 2,2,2-trifluoroethyl radical, J. Phys. Chem., 1974, 78, 2315-2317. [all data]

Kiselev, Khuzyasheva, et al., 1979
Kiselev, V.D.; Khuzyasheva, d.G.; Konovalov, A.I., Thermochemical study of the acylation of para-substituted anilines, J. Gen. Chem. USSR, 1979, 49, 2273-2276. [all data]

Landrum and Hoff, 1985
Landrum, J.T.; Hoff, C.D., J. Organometal. Chem., 1985, 282, 215. [all data]

Sunner, 1955
Sunner, S., Strain in 6,8-thioctic acid, Nature (London), 1955, 176, 217. [all data]

Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2, J. Chem. Soc., 1955, 115-121. [all data]

Gellner and Skinner, 1949
Gellner, O.H.; Skinner, H.A., Dissociation energies of carbon-halogen bonds. The bond strengths allyl-X and benzyl-X, J. Chem. Soc., 1949, 1145-1148. [all data]

Carson, Pritchard, et al., 1950
Carson, A.S.; Pritchard, H.O.; Skinner, H.A., The heats of hydrolysis of the benzoyl halides, J. Chem. Soc., 1950, 656-659. [all data]

Baldwin, Lappert, et al., 1972
Baldwin, J.C.; Lappert, M.F.; Pedley, J.B.; Poland, J.S., J. Chem. Soc., Dalton Trans., 1972, 1943.. [all data]

Shum and Benson, 1983
Shum, L.G.S.; Benson, S.W., Thermochemnistry and kinetics of the reaction of methyl mercaptan with iodine, Int. J. Chem. Kinet., 1983, 15, 433-453. [all data]

Solly, Golden, et al., 1970
Solly, R.K.; Golden, D.M.; Benson, S.W., Thermochemical properties of iodoacetone. Intramolecular electrostatic interactions in polar molecules, J. Am. Chem. Soc., 1970, 92, 4653-4656. [all data]

Walsh and Benson, 1966
Walsh, R.; Benson, S.W., The heats of formation of acetyl iodide and the acetyl radical, J. Phys. Chem., 1966, 70, 3751-3753. [all data]

Shum and Benson, 1985
Shum, L.G.S.; Benson, S.W., Iodine catalyzed pyrolysis of dimethyl sulfide. Heats of formaton of CH3SCH2I, the CH3SCH2 radical, and the pibond energy in CH2S, Int. J. Chem. Kinet., 1985, 17, 277-292. [all data]

Calado, Dias, et al., 1979
Calado, J.C.G.; Dias, A.R.; Martinho Simões, J.A.; Ribeiro da Silva, M.A.V., Rev. Port. Quím., 1979, 21, 129. [all data]

Solly and Benson, 1971
Solly, R.K.; Benson, S.W., Thermochemistry of the reaction of benzaldehyde with iodine. The enthalpy of formation of benzaldehyde and benzoyl iodide, J. Chem. Thermodyn., 1971, 3, 203-209. [all data]

Diogo, Simoni, et al., 1993
Diogo, H.P.; Simoni, J.A.; Minas da Piedade, M.E.; Dias, A.R.; Martinho Simões, J.A., J. Am. Chem. Soc., 1993, 115, 2764. [all data]

Pickard and Rodgers, 1977
Pickard, J.M.; Rodgers, A.S., The kinetics and thermochemistry of the reaction of 1,1-difluoroethane with iodine. The difluoromethylene-hydrogen bond dissociation energy in 1,1-difluoroethane and the heat of formation of 1,1-difluoroethyl, J. Am. Chem. Soc., 1977, 99, 691-694. [all data]

Calhorda, Dias, et al., 1987
Calhorda, M.J.; Dias, A.R.; Minas da Piedade M.E.; Salema, M.S.; Martinho Simões J.A., Organometallics, 1987, 6, 734. [all data]

Noble and Walsh, 1983
Noble, P.N.; Walsh, R., Kinetics of the gas phase reaction between iodine and monogermane and the bond dissociation energy D(H3Ge-H), Int. J. Chem. Kinet., 1983, 15, 547. [all data]

Furuyama, Golden, et al., 1970
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria, J. Chem. Thermodyn., 1970, 2, 161-169. [all data]

Solly, Golden, et al., 1970, 2
Solly, R.K.; Golden, D.M.; Benson, S.W., Kinetics and thermochemistry of the gas phase reaction of methyl ethyl ketone with iodine. II. The heat of formation and unimolecular decomposition of 2-iodo-3-butanone, Int. J. Chem. Kinet., 1970, 2, 393-407. [all data]

Furuyama, Golden, et al., 1969
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of the gas phase equilibria i-C3H7I = C3H6 + HI, n-C3H7I = i-C3H7I, and C3H6 + 2HI = C3H8 + I2, J. Chem. Thermodyn., 1969, 1, 363-375. [all data]

Doncaster and Walsh, 1979
Doncaster, A.M.; Walsh, R., J. Phys. Chem., 1979, 83, 578. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References