Nitrous oxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas19.61kcal/molReviewChase, 1998Data last reviewed in December, 1964
Quantity Value Units Method Reference Comment
gas,1 bar52.572cal/mol*KReviewChase, 1998Data last reviewed in December, 1964

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1400.1400. to 6000.
A 6.61565114.41270
B 12.224900.247267
C -7.324221-0.046127
D 1.6366910.002997
E -0.037741-1.639641
F 17.0290011.61900
G 57.0306965.12911
H 19.6100019.61000
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in December, 1964 Data last reviewed in December, 1964

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Ptriple0.86741atmN/AFonseca and Lobo, 1989Uncertainty assigned by TRC = 0.0001 atm; TRC
Ptriple0.8676atmN/ACalado, Rebelo, et al., 1986Uncertainty assigned by TRC = 0.00008 atm; TRC
Quantity Value Units Method Reference Comment
Tc309.56KN/AOhgaki, Umezono, et al., 1990Uncertainty assigned by TRC = 0.15 K; TRC
Tc309.65KN/ALi and Kiran, 1988Uncertainty assigned by TRC = 0.2 K; TRC
Tc309.49KN/ATsiklis and Prokhorov, 1967TRC
Tc309.55KN/ACook, 1953Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Pc71.43atmN/AOhgaki, Umezono, et al., 1990Uncertainty assigned by TRC = 0.20 atm; TRC
Pc71.75atmN/ALi and Kiran, 1988Uncertainty assigned by TRC = 0.49 atm; TRC
Pc71.400atmN/ACook, 1953Uncertainty assigned by TRC = 0.5000 atm; TRC
Quantity Value Units Method Reference Comment
Vc0.0955l/molN/ALi and Kiran, 1988Uncertainty assigned by TRC = 0.002 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc10.3mol/lN/AOhgaki, Umezono, et al., 1990Uncertainty assigned by TRC = 0.1 mol/l; TRC
ρc10.2mol/lN/ATsiklis and Prokhorov, 1967Visual in pVT apparatus, Khodeeva and Lebedeva Russ. J. Phys. Chem. 1966, 40, 1668.; TRC
ρc10.3mol/lN/ACook, 1953Uncertainty assigned by TRC = 0.05 mol/l; TRC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Reference Comment
3.94184.7Atake and Chihara, 1974AC
3.85221.Hoge, 1945Based on data from 182. to 236. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
129.8 to 187.74.37228621.077-44.659Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
6.00 ± 0.174.LEBryson, Cazcarra, et al., 1974Based on data from 68. to 80. K.; AC
5.88161.N/ABlue and Giauque, 1935Based on data from 148. to 182. K.; AC
5.64113.MGBlack, van Praagh, et al., 1930Based on data from 103. to 123. K.; AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.6182.4Atake and Chihara, 1974AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Nitric oxide anion + Nitrous oxide = (Nitric oxide anion • Nitrous oxide)

By formula: NO- + N2O = (NO- • N2O)

Quantity Value Units Method Reference Comment
Δr10. ± 30.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr18.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr14.9cal/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=7.70 kcal/mol; M

NO2+ + Nitrous oxide = (NO2+ • Nitrous oxide)

By formula: NO2+ + N2O = (NO2+ • N2O)

Quantity Value Units Method Reference Comment
Δr14.1kcal/molEICameron, Aitken, et al., 1994gas phase; M
Δr17.4kcal/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr13.1 ± 0.8kcal/molDTIllies, 1988gas phase; ΔrH(0 K)=13.3 kcal/mol; M
Δr13.1kcal/molPILinn and Ng, 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr12.4cal/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=13.3 kcal/mol; M

Oxygen cation + Nitrous oxide = (Oxygen cation • Nitrous oxide)

By formula: O2+ + N2O = (O2+ • N2O)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr10.7 ± 0.4kcal/molDTIllies, 1988gas phase; ΔrH(0 K)=10.8 kcal/mol; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr15.3cal/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=10.8 kcal/mol; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.9200.FAAdams and Bohme, 1970gas phase; switching reaction(O2+)O2; M

(Iodide • 2Nitrous oxide) + Nitrous oxide = (Iodide • 3Nitrous oxide)

By formula: (I- • 2N2O) + N2O = (I- • 3N2O)

Quantity Value Units Method Reference Comment
Δr2.7 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr3.2kcal/molPHPMSHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr15.cal/mol*KN/AHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M

(Nitric oxide anion • Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 2Nitrous oxide)

By formula: (NO- • N2O) + N2O = (NO- • 2N2O)

Quantity Value Units Method Reference Comment
Δr5.90 ± 0.90kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr4.60kcal/molN/ACoe, Snodgrass, et al., 1987gas phase; B
Δr5.6kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Δr6.kcal/molPESCoe, Snodgrass, et al., 1986gas phase; D(N2O)2 not accounted for; M
Quantity Value Units Method Reference Comment
Δr-1.0 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 2Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 3Nitrous oxide)

By formula: (NO- • 2N2O) + N2O = (NO- • 3N2O)

Quantity Value Units Method Reference Comment
Δr5.20 ± 0.90kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr5.1kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr21.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.2 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Iodide • Nitrous oxide) + Nitrous oxide = (Iodide • 2Nitrous oxide)

By formula: (I- • N2O) + N2O = (I- • 2N2O)

Quantity Value Units Method Reference Comment
Δr2.9 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr3.3 ± 0.3kcal/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr14.2cal/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

Iodide + Nitrous oxide = (Iodide • Nitrous oxide)

By formula: I- + N2O = (I- • N2O)

Quantity Value Units Method Reference Comment
Δr2.7 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr3.8 ± 0.3kcal/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr14.1cal/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

HN2O+ + Nitrous oxide = (HN2O+ • Nitrous oxide)

By formula: HN2O+ + N2O = (HN2O+ • N2O)

Quantity Value Units Method Reference Comment
Δr16.7kcal/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr20.6kcal/molPHPMSSzulejko and McMahon, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Δr31.5cal/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M

(Oxygen anion • 2Nitrous oxide) + Nitrous oxide = (Oxygen anion • 3Nitrous oxide)

By formula: (O2- • 2N2O) + N2O = (O2- • 3N2O)

Quantity Value Units Method Reference Comment
Δr6.40 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-0.8 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Oxygen anion • 3Nitrous oxide) + Nitrous oxide = (Oxygen anion • 4Nitrous oxide)

By formula: (O2- • 3N2O) + N2O = (O2- • 4N2O)

Quantity Value Units Method Reference Comment
Δr5.70 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.5 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Oxygen anion • 4Nitrous oxide) + Nitrous oxide = (Oxygen anion • 5Nitrous oxide)

By formula: (O2- • 4N2O) + N2O = (O2- • 5N2O)

Quantity Value Units Method Reference Comment
Δr5.30 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.9 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Oxygen anion • 5Nitrous oxide) + Nitrous oxide = (Oxygen anion • 6Nitrous oxide)

By formula: (O2- • 5N2O) + N2O = (O2- • 6N2O)

Quantity Value Units Method Reference Comment
Δr5.00 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-2.2 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 2Nitrous oxide) + Nitrous oxide = (O- • 3Nitrous oxide)

By formula: (O- • 2N2O) + N2O = (O- • 3N2O)

Quantity Value Units Method Reference Comment
Δr5.40 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-0.9 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 3Nitrous oxide) + Nitrous oxide = (O- • 4Nitrous oxide)

By formula: (O- • 3N2O) + N2O = (O- • 4N2O)

Quantity Value Units Method Reference Comment
Δr5.20 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-2.0 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 4Nitrous oxide) + Nitrous oxide = (O- • 5Nitrous oxide)

By formula: (O- • 4N2O) + N2O = (O- • 5N2O)

Quantity Value Units Method Reference Comment
Δr5.20 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-2.3 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 5Nitrous oxide) + Nitrous oxide = (O- • 6Nitrous oxide)

By formula: (O- • 5N2O) + N2O = (O- • 6N2O)

Quantity Value Units Method Reference Comment
Δr5.10 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-2.7 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • 6Nitrous oxide) + Nitrous oxide = (O- • 7Nitrous oxide)

By formula: (O- • 6N2O) + N2O = (O- • 7N2O)

Quantity Value Units Method Reference Comment
Δr5.10 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-3.3 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(O- • Nitrous oxide) + Nitrous oxide = (O- • 2Nitrous oxide)

By formula: (O- • N2O) + N2O = (O- • 2N2O)

Quantity Value Units Method Reference Comment
Δr5.40 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-0.3 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Oxygen anion • Nitrous oxide) + Nitrous oxide = (Oxygen anion • 2Nitrous oxide)

By formula: (O2- • N2O) + N2O = (O2- • 2N2O)

Quantity Value Units Method Reference Comment
Δr8.70 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr27.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr0.6 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

Oxygen anion + Nitrous oxide = (Oxygen anion • Nitrous oxide)

By formula: O2- + N2O = (O2- • N2O)

Quantity Value Units Method Reference Comment
Δr<13.60kcal/molIMRBAdams and Bohme, 1970gas phase; N2O..O2- + O2 -> O4- + N2O; B
Δr8.8kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr27.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M

(Nitric oxide anion • 3Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 4Nitrous oxide)

By formula: (NO- • 3N2O) + N2O = (NO- • 4N2O)

Quantity Value Units Method Reference Comment
Δr5.00 ± 0.90kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr4.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.2 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 4Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 5Nitrous oxide)

By formula: (NO- • 4N2O) + N2O = (NO- • 5N2O)

Quantity Value Units Method Reference Comment
Δr4.20 ± 0.90kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr4.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-1.5 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Hydronium cation • 3Nitrous oxide) + Nitrous oxide = (Hydronium cation • 4Nitrous oxide)

By formula: (H3O+ • 3N2O) + N2O = (H3O+ • 4N2O)

Quantity Value Units Method Reference Comment
Δr5.2kcal/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr21.cal/mol*KN/AHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M

(NO2+ • 5Nitrous oxide) + Nitrous oxide = (NO2+ • 6Nitrous oxide)

By formula: (NO2+ • 5N2O) + N2O = (NO2+ • 6N2O)

Quantity Value Units Method Reference Comment
Δr3.9kcal/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/AHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M

(HN2O+ • 5Nitrous oxide) + Nitrous oxide = (HN2O+ • 6Nitrous oxide)

By formula: (HN2O+ • 5N2O) + N2O = (HN2O+ • 6N2O)

Quantity Value Units Method Reference Comment
Δr4.8kcal/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr30.cal/mol*KN/AHiraoka, Fujimaki, et al., 1994gas phase; Entropy change calculated or estimated; M

(Chlorine anion • 4Nitrous oxide) + Nitrous oxide = (Chlorine anion • 5Nitrous oxide)

By formula: (Cl- • 4N2O) + N2O = (Cl- • 5N2O)

Quantity Value Units Method Reference Comment
Δr4.8kcal/molPHPMSHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/AHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M

(Fluorine anion • 6Nitrous oxide) + Nitrous oxide = (Fluorine anion • 7Nitrous oxide)

By formula: (F- • 6N2O) + N2O = (F- • 7N2O)

Quantity Value Units Method Reference Comment
Δr3.3kcal/molPHPMSHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka, Aruga, et al., 1993gas phase; Entropy change calculated or estimated; M

(NO2+ • 2Nitrous oxide) + Nitrous oxide = (NO2+ • 3Nitrous oxide)

By formula: (NO2+ • 2N2O) + N2O = (NO2+ • 3N2O)

Quantity Value Units Method Reference Comment
Δr2.8kcal/molEICameron, Aitken, et al., 1994gas phase; M
Δr5.6kcal/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(NO2+ • Nitrous oxide) + Nitrous oxide = (NO2+ • 2Nitrous oxide)

By formula: (NO2+ • N2O) + N2O = (NO2+ • 2N2O)

Quantity Value Units Method Reference Comment
Δr5.1kcal/molEICameron, Aitken, et al., 1994gas phase; M
Δr5.7kcal/molPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr18.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994gas phase; M

(Nitric oxide anion • 5Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 6Nitrous oxide)

By formula: (NO- • 5N2O) + N2O = (NO- • 6N2O)

Quantity Value Units Method Reference Comment
Δr4.40 ± 0.20kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M,M
Quantity Value Units Method Reference Comment
Δr-1.9 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

(Nitric oxide anion • 6Nitrous oxide) + Nitrous oxide = (Nitric oxide anion • 7Nitrous oxide)

By formula: (NO- • 6N2O) + N2O = (NO- • 7N2O)

Quantity Value Units Method Reference Comment
Δr4.20 ± 0.30kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B,M,M
Quantity Value Units Method Reference Comment
Δr-2.7 ± 1.0kcal/molTDAsHiraoka, Fujimaki, et al., 1994, 2gas phase; B

Methyl cation + Nitrous oxide = (Methyl cation • Nitrous oxide)

By formula: CH3+ + N2O = (CH3+ • N2O)

Quantity Value Units Method Reference Comment
Δr52.9kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

(Iodide • 10Nitrous oxide) + Nitrous oxide = (Iodide • 11Nitrous oxide)

By formula: (I- • 10N2O) + N2O = (I- • 11N2O)

Quantity Value Units Method Reference Comment
Δr1.0 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 11Nitrous oxide) + Nitrous oxide = (Iodide • 12Nitrous oxide)

By formula: (I- • 11N2O) + N2O = (I- • 12N2O)

Quantity Value Units Method Reference Comment
Δr1.3 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 9Nitrous oxide) + Nitrous oxide = (Iodide • 10Nitrous oxide)

By formula: (I- • 9N2O) + N2O = (I- • 10N2O)

Quantity Value Units Method Reference Comment
Δr1.8 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 3Nitrous oxide) + Nitrous oxide = (Iodide • 4Nitrous oxide)

By formula: (I- • 3N2O) + N2O = (I- • 4N2O)

Quantity Value Units Method Reference Comment
Δr2.8 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 4Nitrous oxide) + Nitrous oxide = (Iodide • 5Nitrous oxide)

By formula: (I- • 4N2O) + N2O = (I- • 5N2O)

Quantity Value Units Method Reference Comment
Δr2.7 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 5Nitrous oxide) + Nitrous oxide = (Iodide • 6Nitrous oxide)

By formula: (I- • 5N2O) + N2O = (I- • 6N2O)

Quantity Value Units Method Reference Comment
Δr2.3 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 6Nitrous oxide) + Nitrous oxide = (Iodide • 7Nitrous oxide)

By formula: (I- • 6N2O) + N2O = (I- • 7N2O)

Quantity Value Units Method Reference Comment
Δr2.2 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 7Nitrous oxide) + Nitrous oxide = (Iodide • 8Nitrous oxide)

By formula: (I- • 7N2O) + N2O = (I- • 8N2O)

Quantity Value Units Method Reference Comment
Δr2.1 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 8Nitrous oxide) + Nitrous oxide = (Iodide • 9Nitrous oxide)

By formula: (I- • 8N2O) + N2O = (I- • 9N2O)

Quantity Value Units Method Reference Comment
Δr2.4 ± 2.0kcal/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(N2O2- • 4294967295Nitrous oxide) + Nitrous oxide = N2O2-

By formula: (N2O2- • 4294967295N2O) + N2O = N2O2-

Quantity Value Units Method Reference Comment
Δr23.1 ± 1.2kcal/molN/ALi and Continetti, 2002gas phase; B
Δr32.30 ± 0.70kcal/molLPDOsboen, Leahy, et al., 1996gas phase; Affinity at 0 K; B

(HO- • 3Nitrous oxide) + Nitrous oxide = (HO- • 4Nitrous oxide)

By formula: (HO- • 3N2O) + N2O = (HO- • 4N2O)

Quantity Value Units Method Reference Comment
Δr>7. ± 33.kcal/molN/AKim, Wenthold, et al., 1998gas phase; Vertical Detachment Energy: 2.981 eV. Affinity is EA difference with next lower +0.08 eV f; B

(HO- • 4Nitrous oxide) + Nitrous oxide = (HO- • 5Nitrous oxide)

By formula: (HO- • 4N2O) + N2O = (HO- • 5N2O)

Quantity Value Units Method Reference Comment
Δr>5. ± 54.kcal/molN/AKim, Wenthold, et al., 1998gas phase; Vertical Detachment Energy: 3.146 eV. Affinity is EA difference with next lower +0.08 eV f; B

(HO- • 2Nitrous oxide) + Nitrous oxide = (HO- • 3Nitrous oxide)

By formula: (HO- • 2N2O) + N2O = (HO- • 3N2O)

Quantity Value Units Method Reference Comment
Δr6.90kcal/molN/AKim, Wenthold, et al., 1998gas phase; Vertical Detachment Energy: 2.761 eV. Affinity is EA difference with next lower +0.08 eV f; B

(HO- • Nitrous oxide) + Nitrous oxide = (HO- • 2Nitrous oxide)

By formula: (HO- • N2O) + N2O = (HO- • 2N2O)

Quantity Value Units Method Reference Comment
Δr7.80kcal/molN/AKim, Wenthold, et al., 1998gas phase; Vertical Detachment Energy: 2.485 eV. Affinity is EA difference with next lower +0.08 eV f; B

(Chlorine anion • 2Nitrous oxide) + Nitrous oxide = (Chlorine anion • 3Nitrous oxide)

By formula: (Cl- • 2N2O) + N2O = (Cl- • 3N2O)

Quantity Value Units Method Reference Comment
Δr5.1 ± 0.3kcal/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr20.0cal/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Chlorine anion • 3Nitrous oxide) + Nitrous oxide = (Chlorine anion • 4Nitrous oxide)

By formula: (Cl- • 3N2O) + N2O = (Cl- • 4N2O)

Quantity Value Units Method Reference Comment
Δr4.9 ± 0.3kcal/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr20.9cal/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

(Fluorine anion • 2Nitrous oxide) + Nitrous oxide = (Fluorine anion • 3Nitrous oxide)

By formula: (F- • 2N2O) + N2O = (F- • 3N2O)

Quantity Value Units Method Reference Comment
Δr8.4 ± 0.3kcal/molPHPMSHiraoka, Aruga, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr23.6cal/mol*KPHPMSHiraoka, Aruga, et al., 1993gas phase; M

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0252600.LN/AThe parameterization given by missing citation (parameters A, B, C) doesn't fit the data in the same paper for this substance. Therefore the parameteriztaion of the solubility data (X1) was recalculated.
0.0242800.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
0.025 QN/ASeveral references are given in the list of Henry's law constants but not assigned to specific species.
0.0242600.LN/A 
0.026 QN/A 
0.0242700.XN/A 
0.025 XN/AThe value is taken from the compilation of solubilities by W. Asman (unpublished).

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-1182.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillarySPB-1182.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Fonseca and Lobo, 1989
Fonseca, I.M.A.; Lobo, L.Q., Thermodynamics of liquid mixtures of xenon and methyl fluoride, Fluid Phase Equilib., 1989, 47, 249. [all data]

Calado, Rebelo, et al., 1986
Calado, J.C.G.; Rebelo, L.P.N.; Streett, W.B.; Zollweg, J.A., Thermodynamics of liquid (dimethylether + xenon), J. Chem. Thermodyn., 1986, 18, 931. [all data]

Ohgaki, Umezono, et al., 1990
Ohgaki, K.; Umezono, S.; Katayama, T., Pressure-density-temperature (p-ρ-T) relations of fluoroform, nitrous oxide, and propene in the critical region, J. Supercrit. Fluids, 1990, 3, 78-84. [all data]

Li and Kiran, 1988
Li, L.; Kiran, E., Gas-Liquid Critical Properties of Methylamine + Nitrous Oxide and Methylamine + Ethylene Binary Mixtures, J. Chem. Eng. Data, 1988, 33, 342. [all data]

Tsiklis and Prokhorov, 1967
Tsiklis, D.S.; Prokhorov, V.M., Phase equilibria in systems containing fluorine compounds, Zh. Fiz. Khim., 1967, 41, 2195-9. [all data]

Cook, 1953
Cook, D., Vapor Pressure and Orthobaric Density of Nitrous Oxide, Trans. Faraday Soc., 1953, 49, 716. [all data]

Atake and Chihara, 1974
Atake, Tooru; Chihara, Hideaki, A New Condensed Gas Calorimeter. Thermodynamic Properties of Solid and Liquid Dinitrogen Oxide, Bull. Chem. Soc. Jpn., 1974, 47, 9, 2126-2136, https://doi.org/10.1246/bcsj.47.2126 . [all data]

Hoge, 1945
Hoge, H.J., Vapor pressure, latent heat of vaporization, and triple-point temperature of N2O, J. RES. NATL. BUR. STAN., 1945, 34, 3, 281-17, https://doi.org/10.6028/jres.034.015 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Bryson, Cazcarra, et al., 1974
Bryson, Charles E.; Cazcarra, Victor; Levenson, Leonard L., Sublimation rates and vapor pressures of water, carbon dioxide, nitrous oxide, and xenon, J. Chem. Eng. Data, 1974, 19, 2, 107-110, https://doi.org/10.1021/je60061a021 . [all data]

Blue and Giauque, 1935
Blue, R.W.; Giauque, W.F., The Heat Capacity and Vapor Pressure of Solid and Liquid Nitrous Oxide. The Entropy from its Band Spectrum, J. Am. Chem. Soc., 1935, 57, 6, 991-997, https://doi.org/10.1021/ja01309a008 . [all data]

Black, van Praagh, et al., 1930
Black, H.K.; van Praagh, G.; Topley, B., Note on the vapour pressure of solid nitrous oxide, Trans. Faraday Soc., 1930, 26, 196, https://doi.org/10.1039/tf9302600196 . [all data]

Hiraoka, Fujimaki, et al., 1994
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Sato, T.; Yamabe, S., Gas-Phase Solavtion of NO+, O2+, N2O+, and H3O+ with N2O, J. Chem. Phys., 1994, 101, 5, 4073, https://doi.org/10.1063/1.467524 . [all data]

Illies, 1988
Illies, A.J., Thermochemistry of the Gas - Phase Ion - Molecule Clustering of CO2+CO2, SO2+CO2, N2O+N2O, O2+CO2, NO+CO2 and NO+N2O: Description of a New Hybrid Drift Tube/Ion Source with Coaxial Electron Beam and Ion Exit Apertures, J. Phys. Chem., 1988, 92, 10, 2889, https://doi.org/10.1021/j100321a037 . [all data]

Cameron, Aitken, et al., 1994
Cameron, B.R.; Aitken, C.G.; Harland, P.W., Appearence Energies of Small Cluster Ions and their Fragments, J. Chem. Soc. Faraday Trans., 1994, 90, 7, 935, https://doi.org/10.1039/ft9949000935 . [all data]

Linn and Ng, 1981
Linn, S.H.; Ng, C.Y., Photoionization Study of CO2, N2O Dimers and Clusters, J. Chem. Phys., 1981, 75, 10, 4921, https://doi.org/10.1063/1.441931 . [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Arnold, Bradforth, et al., 1995
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M., Study of I-(CO2)n, Br-(CO2)n, and I-(N2O)n clusters by anion photoelectron spectroscopy, J. Chem. Phys., 1995, 102, 9, 3510, https://doi.org/10.1063/1.468576 . [all data]

Hiraoka, Aruga, et al., 1993
Hiraoka, K.; Aruga, K.; Fujimaki, S.; Yamabe, S., Comparative Study of the Gas Phase Bond Strengths of CO2 and N2O with the Halide Ions, J. Am. Soc. Mass Spectrom., 1993, 4, 1, 58, https://doi.org/10.1016/1044-0305(93)85043-W . [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Coe, Snodgrass, et al., 1987
Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H., Photoelectron spectroscopy of the negative cluster ions, NO-(N2O)n=1,2, J. Chem. Phys., 1987, 87, 4302. [all data]

Hiraoka, Fujimaki, et al., 1994, 2
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Gas-phase clustering reactions of O2(-), NO-, and O- with N2O: Isomeric structures for (NO-N2O)(-), J. Phys. Chem., 1994, 98, 34, 8295, https://doi.org/10.1021/j100085a006 . [all data]

Coe, Snodgrass, et al., 1986
Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H., Negative ion photoelectron spectroscopy of N2O- and (N2O)2-, Chem. Phys. Lett., 1986, 124, 274. [all data]

Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B., personal communication, 1992. [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Li and Continetti, 2002
Li, R.J.; Continetti, R.E., Studies of the excited state dynamics of N2O2 by dissociative photodetachment of N2O2-, J. Phys. Chem. A, 2002, 106, 7, 1183-1189, https://doi.org/10.1021/jp013330u . [all data]

Osboen, Leahy, et al., 1996
Osboen, D.L.; Leahy, D.J.; Cyr, D.R.; Neumark, D.M., Photodissociation Spectroscopy and Dynamics of the N2O2- Anion, J. Chem. Phys., 1996, 104, 13, 5026, https://doi.org/10.1063/1.471132 . [all data]

Kim, Wenthold, et al., 1998
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C., Photoelectron spectroscopy of OH-(N2O)(n=1-5), J. Chem. Phys., 1998, 108, 3, 830-837, https://doi.org/10.1063/1.475447 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References