Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

lithium chloride anion

Constants of diatomic molecules

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through January, 1977

Symbols used in the table of constants
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for (7)Li(35)Cl-
X 2Sigma+ 0 (480) 1        2.18 2  


1From the photoelectron spectrum of LiCl- Carlstein, Peterson, et al., 1976; I.P. is reasonably close to the calculated electron affinity of LiCl [0.54 eV Jordan and Luken, 1976]; see also Jordan, 1976.
2The relative intensities of the photoelectron peaks have been compared Carlstein, Peterson, et al., 1976, with calculated Franck-Condon factors.
3Thermochemical value Brewer and Brackett, 1961, Bulewicz, Phillips, et al., 1961, Hildenbrand, Hall, et al., 1964. A slightly higher value was suggested by Gurvich and Veits, 1958.
4Also observed in the electron energy loss spectrum.
5Absorption cross sections Davidovits and Brodhead, 1967.
6Calculated Pearson and Gordy, 1969 from the rotational constants by use of Dunham's theory. From the infrared spectrum of the isotopic mixture Klemperer, Norris, et al., 1960 obtain omegae = 641.1 Klemperer, Norris, et al., 1960, omegaexe = 4.2 Klemperer, Norris, et al., 1960. For 6Li35Cl Moran and Trischka, 1961 find omegae ~705 Moran and Trischka, 1961 by the molecular beam electric resonance method.
7From the effective Be. Using the data of Pearson and Gordy, 1969 for the four LiCl isotopes Watson, 1973 has determined re at the minimum of the Born-Oppenheimer potential as re= 2.020700 Angstroms Watson, 1973.
8IR spectrum of matrix isolated LiCl Snelson and Pitzer, 1963,16.
9Electric dipole moment of 6Li35Cl: muel[D] = 7.0853 + 0.0868(v+1/2) + 0.00056(v+1/2)2 Hebert, Lovas, et al., 1968, see also Marple and Trischka, 1956,14. For electric quadrupole and other hyperfine coupling constants see Marple and Trischka, 1956, Gallagher, Hilborn, et al., 1972. The Zeeman spectrum was also studied by the molecular beam electric resonance method Freeman, Johnson, et al., 1974; gJ(7Li35Cl) = +0.10042, v=0 and gJ(7Li35Cl)= +0.10064 muN, v=1, respectively, superseding an earlier value by the magnetic resonance method Mehran, Brooks, et al., 1966.
10Nuclear reorientation spectrum of Li Kusch, 1949, Logan, Cote, et al., 1952, Kusch, 1959.
11From D00(LiCl) and the electron affinities of LiCl and Cl.


Go To: Top, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Carlstein, Peterson, et al., 1976
Carlstein, J.L.; Peterson, J.R.; Lineberger, W.C., Binding of an electron by the field of a molecular dipole - LiCl-, Chem. Phys. Lett., 1976, 37, 5. [all data]

Jordan and Luken, 1976
Jordan, K.D.; Luken, W., Theoretical study of the binding of an electron to a molecular dipole: LiCl-, J. Chem. Phys., 1976, 64, 2760. [all data]

Jordan, 1976
Jordan, K.D., Correlation between molecular electron affinities and dipole moments, J. Chem. Phys., 1976, 65, 1214. [all data]

Brewer and Brackett, 1961
Brewer, L.; Brackett, E., The dissociation energies of gaseous alkali halides, Chem. Rev., 1961, 61, 425. [all data]

Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M., Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals, Trans. Faraday Soc., 1961, 57, 921. [all data]

Hildenbrand, Hall, et al., 1964
Hildenbrand, D.L.; Hall, W.F.; Ju, F.; Potter, N.D., Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides, J. Chem. Phys., 1964, 40, 2882. [all data]

Gurvich and Veits, 1958
Gurvich, L.V.; Veits, I.V., Determination of molecular dissociation energies from flame reaction equilibrium studies, Bull. Acad. Sci. USSR, Phys. Ser. Engl. Transl., 1958, 22, 670-673. [all data]

Davidovits and Brodhead, 1967
Davidovits, P.; Brodhead, D.C., Ultraviolet absorption cross sections for the alkali halide vapors, J. Chem. Phys., 1967, 46, 2968. [all data]

Pearson and Gordy, 1969
Pearson, E.F.; Gordy, W., Millimeter- and submillimeter-wave spectra and molecular constants of LiF and LiCl, Phys. Rev., 1969, 177, 52. [all data]

Klemperer, Norris, et al., 1960
Klemperer, W.; Norris, W.G.; Buchler, A.; Emslie, A.G., Infrared spectra of lithium halide monomers, J. Chem. Phys., 1960, 33, 1534. [all data]

Moran and Trischka, 1961
Moran, T.I.; Trischka, J.W., New determinations of the vibrational constants of Li-Li6F and Li6Cl35 by the molecular beam electric resonance method, J. Chem. Phys., 1961, 34, 923. [all data]

Watson, 1973
Watson, J.K.G., The isotope dependence of the equilibrium rotational constants in 1«SIGMA» states of diatomic molecules, J. Mol. Spectrosc., 1973, 45, 99. [all data]

Snelson and Pitzer, 1963
Snelson, A.; Pitzer, K.S., Infrared spectra by matrix isolation of lithium fluoride, lithium chloride and sodium fluoride, J. Phys. Chem., 1963, 67, 882. [all data]

Hebert, Lovas, et al., 1968
Hebert, A.J.; Lovas, F.J.; Melendres, C.A.; Hollowell, C.D.; Story, T.L., Jr.; Street, K., Jr., Dipole moments of some alkali halide molecules by the molecular beam electric resonance method, J. Chem. Phys., 1968, 48, 2824. [all data]

Marple and Trischka, 1956
Marple, D.T.F.; Trischka, J.W., Radio-frequency spectra of Li6Cl by the molecular beam electric resonance method, Phys. Rev., 1956, 103, 597. [all data]

Gallagher, Hilborn, et al., 1972
Gallagher, T.F., Jr.; Hilborn, R.C.; Ramsey, N.F., Hyperfine spectra of 7Li35Cl and 7Li37Cl, J. Chem. Phys., 1972, 56, 5972. [all data]

Freeman, Johnson, et al., 1974
Freeman, R.R.; Johnson, D.W.; Ramsey, N.F., Molecular beam electric resonance study of the molecular Zeeman spectrum of lithium chloride, J. Chem. Phys., 1974, 61, 3471. [all data]

Mehran, Brooks, et al., 1966
Mehran, F.; Brooks, R.A.; Ramsey, N.F., Rotational magnetic moments of alkali-halide molecules, Phys. Rev., 1966, 141, 93. [all data]

Kusch, 1949
Kusch, P., On the nuclear electric quadrupole moment of Li6, Phys. Rev., 1949, 75, 887. [all data]

Logan, Cote, et al., 1952
Logan, R.A.; Cote, R.E.; Kusch, P., The sign of the quadrupole interaction energy in diatomic molecules, Phys. Rev., 1952, 86, 280. [all data]

Kusch, 1959
Kusch, P., Nuclear reorientation spectrum of Li7 in the gaseous monomers and dimers of the lithium halides, J. Chem. Phys., 1959, 30, 52. [all data]


Go To: Top, Constants of diatomic molecules, References