Carbon monoxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 51 to 100

4Carbon monoxide (g) + nickel (cr) = Nickel tetracarbonyl (g)

By formula: 4CO (g) + Ni (cr) = C4NiO4 (g)

Quantity Value Units Method Reference Comment
Δr-152.7 ± 4.2kJ/molEqGSykes and Townshend, 1955Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970. Temperatures: 398 and 409 K. The reaction enthalpy was obtained by the 3rd law method and refers to 298 K; MS

Vanadium ion (1+) + Carbon monoxide = (Vanadium ion (1+) • Carbon monoxide)

By formula: V+ + CO = (V+ • CO)

Quantity Value Units Method Reference Comment
Δr120. ± 14.kJ/molCIDArmentrout and Kickel, 1994gas phase; ΔrH(0 K0, guided ion beam CID; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
113. (+3.,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M

(CO+ • 6Carbon monoxide) + Carbon monoxide = (CO+ • 7Carbon monoxide)

By formula: (CO+ • 6CO) + CO = (CO+ • 7CO)

Quantity Value Units Method Reference Comment
Δr9.41kJ/molPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M
Quantity Value Units Method Reference Comment
Δr88.3J/mol*KPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M

(CO+ • 7Carbon monoxide) + Carbon monoxide = (CO+ • 8Carbon monoxide)

By formula: (CO+ • 7CO) + CO = (CO+ • 8CO)

Quantity Value Units Method Reference Comment
Δr6.61kJ/molPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M
Quantity Value Units Method Reference Comment
Δr51.9J/mol*KPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M

(CO+ • Carbon monoxide) + Carbon monoxide = (CO+ • 2Carbon monoxide)

By formula: (CO+ • CO) + CO = (CO+ • 2CO)

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPHPMSHiraoka and Mori, 1991gas phase; M
Δr15.kJ/molPILinn, Ono, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr149.J/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(Vanadium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 3Carbon monoxide)

By formula: (V+ • 2CO) + CO = (V+ • 3CO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
69. (+4.,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
61. (+12.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 4Carbon monoxide)

By formula: (V+ • 3CO) + CO = (V+ • 4CO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
85.8 (+9.6,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
95. (+14.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 5Carbon monoxide)

By formula: (V+ • 4CO) + CO = (V+ • 5CO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
91. (+3.,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
92.9 (+7.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 6Carbon monoxide)

By formula: (V+ • 5CO) + CO = (V+ • 6CO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
99.6 (+6.7,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
124. (+7.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Nickel ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Nickel ion (1+) • 3Carbon monoxide)

By formula: (Ni+ • 2CO) + CO = (Ni+ • 3CO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
91.6 (+5.9,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
95.0 (+4.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Nickel ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Nickel ion (1+) • 4Carbon monoxide)

By formula: (Ni+ • 3CO) + CO = (Ni+ • 4CO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
72. (+3.,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
72.0 (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 2Carbon monoxide)

By formula: (V+ • CO) + CO = (V+ • 2CO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
91. (+3.,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
106. (+7.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Nickel ion (1+) • Carbon monoxide) + Carbon monoxide = (Nickel ion (1+) • 2Carbon monoxide)

By formula: (Ni+ • CO) + CO = (Ni+ • 2CO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
168. (+10.,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion bema CID; M
169. (+9.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

C5O5W (g) = C4O4W (g) + Carbon monoxide (g)

By formula: C5O5W (g) = C4O4W (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr151. - 163.kJ/molKinGRayner, Ishikawa, et al., 1991MS
Δr167. ± 63.kJ/molMBPSVenkataraman, Hou, et al., 1990The enthalpy of formation relies on -581. ± 13. kJ/mol for the enthalpy of formation of W(CO)5(g); MS

Dimanganese decacarbonyl (g) = C9Mn2O9 (g) + Carbon monoxide (g)

By formula: C10Mn2O10 (g) = C9Mn2O9 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr159.0 ± 8.4kJ/molLPHPSmith, 1988The reaction enthalpy relies on an activation energy of 159.0 ± 8.4 kJ/mol and assumes a negligible activation barrier for product recombination.; MS

C2NiO2 (g) = CNiO (g) + Carbon monoxide (g)

By formula: C2NiO2 (g) = CNiO (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr197. ± 24.kJ/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr228. ± 63.kJ/molN/AStevens, Feigerle, et al., 1982Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

C3NiO3 (g) = C2NiO2 (g) + Carbon monoxide (g)

By formula: C3NiO3 (g) = C2NiO2 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr118.3 ± 9.8kJ/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr55. ± 42.kJ/molN/AStevens, Feigerle, et al., 1982Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

(Manganese ion (1+) • Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 2Carbon monoxide)

By formula: (Mn+ • CO) + CO = (Mn+ • 2CO)

Quantity Value Units Method Reference Comment
Δr100.kJ/molKERDSDearden, Hayashibara, et al., 1989gas phase; ΔrH<; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
63. (+10.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

C14H10Mo2O4 (solution) + 2Carbon monoxide (solution) = C16H10Mo2O6 (solution)

By formula: C14H10Mo2O4 (solution) + 2CO (solution) = C16H10Mo2O6 (solution)

Quantity Value Units Method Reference Comment
Δr-168.6 ± 1.4kJ/molRSCNolan, López de la Vega, et al., 1986solvent: Toluene; The enthalpy of solution of [Mo(Cp)(CO)2]2(cr) was measured as 15.9 ± 0.4 kJ/mol Nolan, López de la Vega, et al., 1986; MS

C24H30Mo2O4 (solution) + 2Carbon monoxide (solution) = C26H30Mo2O6 (solution)

By formula: C24H30Mo2O4 (solution) + 2CO (solution) = C26H30Mo2O6 (solution)

Quantity Value Units Method Reference Comment
Δr-137.6 ± 2.1kJ/molRSCNolan, López de la Vega, et al., 1986solvent: Toluene; The enthalpy of solution of [Mo(Cp*)(CO)2]2(cr) was measured as 14.6 ± 0.8 kJ/mol Nolan, López de la Vega, et al., 1986; MS

(Manganese ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 3Carbon monoxide)

By formula: (Mn+ • 2CO) + CO = (Mn+ • 3CO)

Quantity Value Units Method Reference Comment
Δr130. ± 30.kJ/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
74. (+10.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 4Carbon monoxide)

By formula: (Mn+ • 3CO) + CO = (Mn+ • 4CO)

Quantity Value Units Method Reference Comment
Δr80. ± 10.kJ/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
65. (+10.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 5Carbon monoxide)

By formula: (Mn+ • 4CO) + CO = (Mn+ • 5CO)

Quantity Value Units Method Reference Comment
Δr70. ± 10.kJ/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
121. (+10.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 6Carbon monoxide)

By formula: (Mn+ • 5CO) + CO = (Mn+ • 6CO)

Quantity Value Units Method Reference Comment
Δr130. ± 20.kJ/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
142. (+10.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(CAS Reg. No. 51222-94-7 • 4294967295Carbon monoxide) + Carbon monoxide = CAS Reg. No. 51222-94-7

By formula: (CAS Reg. No. 51222-94-7 • 4294967295CO) + CO = CAS Reg. No. 51222-94-7

Quantity Value Units Method Reference Comment
Δr164. ± 12.kJ/molN/AStevens, Feigerle, et al., 1982gas phase; B
Δr161. ± 9.6kJ/molCIDTSunderlin, Wang, et al., 1992gas phase; Affinity: CO..Ni(CO)2-; B

(CAS Reg. No. 53221-56-0 • 4294967295Carbon monoxide) + Carbon monoxide = CAS Reg. No. 53221-56-0

By formula: (CAS Reg. No. 53221-56-0 • 4294967295CO) + CO = CAS Reg. No. 53221-56-0

Quantity Value Units Method Reference Comment
Δr56. ± 21.kJ/molN/AEngelking and Lineberger, 1979gas phase; B
Δr177. ± 15.kJ/molCIDTSunderlin, Wang, et al., 1992gas phase; Affinity: CO..Fe(CO)2-; B

(CAS Reg. No. 71701-39-8 • 4294967295Carbon monoxide) + Carbon monoxide = CAS Reg. No. 71701-39-8

By formula: (CAS Reg. No. 71701-39-8 • 4294967295CO) + CO = CAS Reg. No. 71701-39-8

Quantity Value Units Method Reference Comment
Δr162. ± 26.kJ/molN/AEngelking and Lineberger, 1979gas phase; B
Δr149. ± 15.kJ/molCIDTSunderlin, Wang, et al., 1992gas phase; Affinity: CO..Fe(CO)-; B

C11H5MnO5 (solution) + Carbon monoxide (solution) = C12H5MnO6 (solution)

By formula: C11H5MnO5 (solution) + CO (solution) = C12H5MnO6 (solution)

Quantity Value Units Method Reference Comment
Δr-45.2kJ/molEqSCalderazzo, 1977solvent: 2,2'-diethoxydiethyl ether; MS

Manganese ion (1+) + Carbon monoxide = (Manganese ion (1+) • Carbon monoxide)

By formula: Mn+ + CO = (Mn+ • CO)

Quantity Value Units Method Reference Comment
Δr30.kJ/molKERDSDearden, Hayashibara, et al., 1989gas phase; ΔrH>; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
25. (+10.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(CNiO- • 4294967295Carbon monoxide) + Carbon monoxide = CNiO-

By formula: (CNiO- • 4294967295CO) + CO = CNiO-

Quantity Value Units Method Reference Comment
Δr138. ± 24.kJ/molN/AStevens, Feigerle, et al., 1982gas phase; B
Δr136. ± 24.kJ/molCIDTSunderlin, Wang, et al., 1992gas phase; Affinity: CO..Ni-; B

Osmium, dodecacarbonyltri-, triangulo (cr) = 12Carbon monoxide (g) + 3osmium (cr)

By formula: C12O12Os3 (cr) = 12CO (g) + 3Os (cr)

Quantity Value Units Method Reference Comment
Δr423. ± 17.kJ/molTD-HFCConnor, Skinner, et al., 1973Please also see Pedley and Rylance, 1977. The value for the reaction enthalpy was considered a low limit Connor, Skinner, et al., 1973; MS

(CO+ • 3Carbon monoxide) + Carbon monoxide = (CO+ • 4Carbon monoxide)

By formula: (CO+ • 3CO) + CO = (CO+ • 4CO)

Quantity Value Units Method Reference Comment
Δr18.4kJ/molPHPMSHiraoka and Mori, 1991gas phase; two isomers; M
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers; M

(CO+ • 4Carbon monoxide) + Carbon monoxide = (CO+ • 5Carbon monoxide)

By formula: (CO+ • 4CO) + CO = (CO+ • 5CO)

Quantity Value Units Method Reference Comment
Δr17.8kJ/molPHPMSHiraoka and Mori, 1991gas phase; two isomers; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers; M

(Cobalt ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 3Carbon monoxide)

By formula: (Co+ • 2CO) + CO = (Co+ • 3CO)

Quantity Value Units Method Reference Comment
Δr82. ± 12.kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
82. (+12.,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M

(Cobalt ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 4Carbon monoxide)

By formula: (Co+ • 3CO) + CO = (Co+ • 4CO)

Quantity Value Units Method Reference Comment
Δr74.9 ± 5.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
75.3 (+5.9,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M

(Cobalt ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 5Carbon monoxide)

By formula: (Co+ • 4CO) + CO = (Co+ • 5CO)

Quantity Value Units Method Reference Comment
Δr74.9 ± 5.0kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
75.3 (+5.0,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M

(Chromium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 3Carbon monoxide)

By formula: (Cr+ • 2CO) + CO = (Cr+ • 3CO)

Quantity Value Units Method Reference Comment
Δr54.0 ± 5.9kJ/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
54.0 (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 4Carbon monoxide)

By formula: (Cr+ • 3CO) + CO = (Cr+ • 4CO)

Quantity Value Units Method Reference Comment
Δr51.0 ± 7.5kJ/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
51.0 (+7.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 5Carbon monoxide)

By formula: (Cr+ • 4CO) + CO = (Cr+ • 5CO)

Quantity Value Units Method Reference Comment
Δr62. ± 3.kJ/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
62. (+3.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 3Carbon monoxide)

By formula: (Fe+ • 2CO) + CO = (Fe+ • 3CO)

Quantity Value Units Method Reference Comment
Δr69.0 ± 5.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
66.1 (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 4Carbon monoxide)

By formula: (Fe+ • 3CO) + CO = (Fe+ • 4CO)

Quantity Value Units Method Reference Comment
Δr97.9 ± 5.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
103. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 5Carbon monoxide)

By formula: (Fe+ • 4CO) + CO = (Fe+ • 5CO)

Quantity Value Units Method Reference Comment
Δr97.1 ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
112. (+4.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 2Carbon monoxide)

By formula: (Cr+ • CO) + CO = (Cr+ • 2CO)

Quantity Value Units Method Reference Comment
Δr95. ± 3.kJ/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
95. (+3.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Pentane (solution) + Chromium hexacarbonyl (solution) = C10H12CrO5 (solution) + Carbon monoxide (solution)

By formula: C5H12 (solution) + C6CrO6 (solution) = C10H12CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr117. ± 11.kJ/molPACMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS

(Iron ion (1+) • Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 2Carbon monoxide)

By formula: (Fe+ • CO) + CO = (Fe+ • 2CO)

Quantity Value Units Method Reference Comment
Δr148. ± 5.0kJ/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
151. (+14.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Tungsten hexacarbonyl (solution) + Heptane (solution) = C12H16O5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C7H16 (solution) = C12H16O5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr136.4 ± 1.7kJ/molPACMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS

C12H34P4Ru (solution) + Carbon monoxide (solution) = C13H32OP4Ru (solution) + Hydrogen (solution)

By formula: C12H34P4Ru (solution) + CO (solution) = C13H32OP4Ru (solution) + H2 (solution)

Quantity Value Units Method Reference Comment
Δr-84.9kJ/molPACBelt, Scaiano, et al., 1993solvent: Cyclohexane; The reaction enthalpy relies on 0.85 for the quantum yield of H2 dissociation.; MS

C39H68O3P2W (solution) + Carbon monoxide (solution) = C40H66O4P2W (solution) + Hydrogen (g)

By formula: C39H68O3P2W (solution) + CO (solution) = C40H66O4P2W (solution) + H2 (g)

Quantity Value Units Method Reference Comment
Δr-85.8 ± 2.9kJ/molRSCGonzalez, Zhang, et al., 1988solvent: Toluene; MS
Δr-95.4 ± 4.2kJ/molRSCGonzalez, Zhang, et al., 1988solvent: Tetrahydrofuran; MS

Benzenechromiumtricarbonyl (solution) + Heptane (solution) = C15H22CrO2 (solution) + Carbon monoxide (solution)

By formula: C9H6CrO3 (solution) + C7H16 (solution) = C15H22CrO2 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr137.2 ± 1.3kJ/molPACBurkey, 1990solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS

Vanadium, tetracarbonyl(η5-2,4-cyclopentadien-1-yl)- (solution) + Heptane (solution) = C15H21O3V (solution) + Carbon monoxide (solution)

By formula: C9H5O4V (solution) + C7H16 (solution) = C15H21O3V (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr107. ± 13.kJ/molPACJohnson, Popov, et al., 1991solvent: Heptane; The reaction enthalpy relies on 0.80 for the quantum yield of CO dissociation.; MS

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Sykes and Townshend, 1955
Sykes, K.W.; Townshend, S.C., J. Chem. Soc., 1955, 2528.. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Sievers and Armentrout, 1995
Sievers, M.R.; Armentrout, P.B., Collision-Induced Dissociation Studies of V(CO)x+, x = 1-7: Sequential Bond Energies and the Heat of Formation of V(CO)6, J. Phys. Chem., 1995, 99, 20, 8135, https://doi.org/10.1021/j100020a041 . [all data]

Hiraoka and Mori, 1991
Hiraoka, K.; Mori, T., On the formation of the Isomeric Cluster Ions (CO)n+, J. Chem. Phys., 1991, 94, 4, 2697, https://doi.org/10.1063/1.459844 . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B., Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]], J. Phys. Chem., 1995, 99, 7819. [all data]

Rayner, Ishikawa, et al., 1991
Rayner, D.M.; Ishikawa, Y.; Brown, C.E.; Hackett, P.A., J. Chem. Phys., 1991, 94, 5471. [all data]

Venkataraman, Hou, et al., 1990
Venkataraman, B.; Hou, H.; Zhang, Z.; Chen, S.; Bandukwalla, G.; Vernon, M., J. Chem. Phys., 1990, 92, 5338. [all data]

Smith, 1988
Smith, G.P., Polyhedron, 1988, 7, 1605. [all data]

Sunderlin, Wang, et al., 1992
Sunderlin, L.S.; Wang, D.; Squires, R.R., Metal Carbonyl Bond Strengths in Fe(CO)n- and Ni(CO)n-, J. Am. Chem. Soc., 1992, 114, 8, 2788, https://doi.org/10.1021/ja00034a004 . [all data]

Stevens, Feigerle, et al., 1982
Stevens, A.E.; Feigerle, C.S.; Lineberger, W.C., Laser Photoelectron Spectrometry of Ni(CO)n-, n=1-3, J. Am. Chem. Soc., 1982, 104, 19, 5026, https://doi.org/10.1021/ja00383a004 . [all data]

Compton and Stockdale, 1976
Compton, R.N.; Stockdale, J.A.D., Formation of gas phase negative ions in Fe(CO)5 and Ni(CO)4, Int. J. Mass Spectrom. Ion Phys., 1976, 22, 47. [all data]

Dearden, Hayashibara, et al., 1989
Dearden, D.V.; Hayashibara, K.; Beauchamp, J.L.; Kirschner, N.J.; Van Koppen, P.A.M.; Bowers, M.T., Fundamental Studies of the Energetics and Dynamics of Ligand Dissociation and Exchange Processes at Transition - Metal Centers in the Gas Phase: Mn(COx)+, x = 1 - 6, J. Am. Chem. Soc., 1989, 111, 7, 2401, https://doi.org/10.1021/ja00189a005 . [all data]

Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D., Inorg. Chem., 1986, 25, 4446. [all data]

Engelking and Lineberger, 1979
Engelking, P.C.; Lineberger, W.C., Laser photoelectron spectrometry of the negative ions of iron and iron carbonyls. Electron affinity determination for the series Fe(CO)n,n=0,1,2,3,4, J. Am. Chem. Soc., 1979, 101, 5569. [all data]

Calderazzo, 1977
Calderazzo, F., Angew. Chem. Int. Ed. Engl., 1977, 16, 299. [all data]

Connor, Skinner, et al., 1973
Connor, J.A.; Skinner, H.A.; Virmani, Y., High temperature microcalorimetric studies of the thermal decomposition and iodination of polynuclear carbonyls of Fe, Co, Ru, Rh, Re, Os and Ir, Faraday Symp. Chem. Soc., 1973, 8, 18, https://doi.org/10.1039/fs9730800018 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Goebel, Haynes, et al., 1995
Goebel, S.; Haynes, C.L.; Khan, F.A.; Armentrout, P.B., Collision-Induced Dissociation Studies of Co(CO)x, x = 1-5: Sequential Bond Energies and the Heat of Formation of Co(CO)4, J. Am. Chem. Soc., 1995, 117, 26, 6994, https://doi.org/10.1021/ja00131a023 . [all data]

Khan, Clemmer, et al., 1993
Khan, F.A.; Clemmer, D.E.; Schultz, R.H.; Armentrout, P.B., Sequential Bond Energies of Cr(CO)x+, x=1-6, J. Phys. Chem., 1993, 97, 30, 7978, https://doi.org/10.1021/j100132a029 . [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Belt, Scaiano, et al., 1993
Belt, S.T.; Scaiano, J.C.; Whittlesey, M.K., J. Am. Chem. Soc., 1993, 115, 1921. [all data]

Gonzalez, Zhang, et al., 1988
Gonzalez, A.A.; Zhang, K.; Nolan, S.P.; Lopez de la Vega, R.; Mukerjee, S.L.; Hoff, C.D., Organometallics, 1988, 7, 2429. [all data]

Burkey, 1990
Burkey, T.J., J. Am. Chem. Soc., 1990, 112, 8329. [all data]

Johnson, Popov, et al., 1991
Johnson, F.P.A.; Popov, V.K.; George, M.W.; Bagratashvili, V.N.; Poliakoff, M.; Turner, J.J., Mendeleev Commun., 1991, 145.. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References