1,3-Diazine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Ion clustering data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Aluminum ion (1+) + 1,3-Diazine = (Aluminum ion (1+) • 1,3-Diazine)

By formula: Al+ + C4H4N2 = (Al+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr38.0 ± 1.4kcal/molCIDTAmunugama and Rodgers, 2001RCD

Cobalt ion (1+) + 1,3-Diazine = (Cobalt ion (1+) • 1,3-Diazine)

By formula: Co+ + C4H4N2 = (Co+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr58.6 ± 3.2kcal/molCIDTAmunugama and Rodgers, 2001RCD

Chromium ion (1+) + 1,3-Diazine = (Chromium ion (1+) • 1,3-Diazine)

By formula: Cr+ + C4H4N2 = (Cr+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr42.4 ± 1.5kcal/molCIDTAmunugama and Rodgers, 2001RCD

Copper ion (1+) + 1,3-Diazine = (Copper ion (1+) • 1,3-Diazine)

By formula: Cu+ + C4H4N2 = (Cu+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr59.6 ± 2.3kcal/molCIDTAmunugama and Rodgers, 2001RCD

Iron ion (1+) + 1,3-Diazine = (Iron ion (1+) • 1,3-Diazine)

By formula: Fe+ + C4H4N2 = (Fe+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr47.5 ± 1.9kcal/molCIDTAmunugama and Rodgers, 2001RCD

Magnesium ion (1+) + 1,3-Diazine = (Magnesium ion (1+) • 1,3-Diazine)

By formula: Mg+ + C4H4N2 = (Mg+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr41.5 ± 1.4kcal/molCIDTAmunugama and Rodgers, 2001RCD

Manganese ion (1+) + 1,3-Diazine = (Manganese ion (1+) • 1,3-Diazine)

By formula: Mn+ + C4H4N2 = (Mn+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr38.0 ± 2.3kcal/molCIDTAmunugama and Rodgers, 2001RCD

Nitric oxide anion + 1,3-Diazine = C4H4N3O-

By formula: NO- + C4H4N2 = C4H4N3O-

Quantity Value Units Method Reference Comment
Δr16.6 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nickel ion (1+) + 1,3-Diazine = (Nickel ion (1+) • 1,3-Diazine)

By formula: Ni+ + C4H4N2 = (Ni+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr58.3 ± 2.3kcal/molCIDTAmunugama and Rodgers, 2001RCD

Scandium ion (1+) + 1,3-Diazine = (Scandium ion (1+) • 1,3-Diazine)

By formula: Sc+ + C4H4N2 = (Sc+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr51.2 ± 2.2kcal/molCIDTAmunugama and Rodgers, 2001RCD

Titanium ion (1+) + 1,3-Diazine = (Titanium ion (1+) • 1,3-Diazine)

By formula: Ti+ + C4H4N2 = (Ti+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr51.1 ± 2.5kcal/molCIDTAmunugama and Rodgers, 2001RCD

Vanadium ion (1+) + 1,3-Diazine = (Vanadium ion (1+) • 1,3-Diazine)

By formula: V+ + C4H4N2 = (V+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr48.8 ± 1.7kcal/molCIDTAmunugama and Rodgers, 2001RCD

Zinc ion (1+) + 1,3-Diazine = (Zinc ion (1+) • 1,3-Diazine)

By formula: Zn+ + C4H4N2 = (Zn+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr49.8 ± 1.8kcal/molCIDTAmunugama and Rodgers, 2001RCD

References

Go To: Top, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Amunugama and Rodgers, 2001
Amunugama, R.; Rodgers, M.T., Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory, J. Phys. Chem. A, 2001, 105, 43, 9883, https://doi.org/10.1021/jp010663i . [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]


Notes

Go To: Top, Ion clustering data, References