Hydrogen cation


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 701 to 750

2-bromonaphthalen-7-ide anion + Hydrogen cation = Naphthalene, 2-bromo-

By formula: C10H6Br- + H+ = C10H7Br

Quantity Value Units Method Reference Comment
Δr1633. ± 14.kJ/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr1600. ± 14.kJ/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C8H7O2- + Hydrogen cation = Benzoic acid, 2-methyl-

By formula: C8H7O2- + H+ = C8H8O2

Quantity Value Units Method Reference Comment
Δr1419. ± 9.2kJ/molG+TSKebarle and McMahon, 1977gas phase
Quantity Value Units Method Reference Comment
Δr1390. ± 8.4kJ/molIMREKebarle and McMahon, 1977gas phase
Δr1391. ± 8.4kJ/molIMREDecouzon, Ertl, et al., 1993gas phase

C3H6NO2- + Hydrogen cation = Acetamide, N-methoxy

By formula: C3H6NO2- + H+ = C3H7NO2

Quantity Value Units Method Reference Comment
Δr1469. ± 8.8kJ/molG+TSDecouzon, Exner, et al., 1990gas phase; Acid: O-methyl acetohydroxamic acid
Quantity Value Units Method Reference Comment
Δr1438. ± 8.4kJ/molIMREDecouzon, Exner, et al., 1990gas phase; Acid: O-methyl acetohydroxamic acid

C10H6Cl- + Hydrogen cation = Naphthalene, 1-chloro-

By formula: C10H6Cl- + H+ = C10H7Cl

Quantity Value Units Method Reference Comment
Δr1594. ± 8.4kJ/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr1561. ± 8.8kJ/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C10H6Cl- + Hydrogen cation = Naphthalene, 1-chloro-

By formula: C10H6Cl- + H+ = C10H7Cl

Quantity Value Units Method Reference Comment
Δr1621. ± 9.6kJ/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr1589. ± 10.kJ/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C10H6Cl- + Hydrogen cation = Naphthalene, 1-chloro-

By formula: C10H6Cl- + H+ = C10H7Cl

Quantity Value Units Method Reference Comment
Δr1610. ± 15.kJ/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr1577. ± 16.kJ/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

1-bromonaphthalen-4-ide anion + Hydrogen cation = Naphthalene, 1-bromo-

By formula: C10H6Br- + H+ = C10H7Br

Quantity Value Units Method Reference Comment
Δr1619. ± 15.kJ/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr1586. ± 15.kJ/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C10H6Br- + Hydrogen cation = Naphthalene, 1-bromo-

By formula: C10H6Br- + H+ = C10H7Br

Quantity Value Units Method Reference Comment
Δr1621. ± 15.kJ/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr1588. ± 15.kJ/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C10H6Cl- + Hydrogen cation = Naphthalene, 2-chloro-

By formula: C10H6Cl- + H+ = C10H7Cl

Quantity Value Units Method Reference Comment
Δr1639. ± 8.4kJ/molBranWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes
Quantity Value Units Method Reference Comment
Δr1607. ± 8.8kJ/molH-TSWenthold and Squires, 1995gas phase; By HO- cleavage of substituted silanes

C13H9- + Hydrogen cation = 1H-Phenalene

By formula: C13H9- + H+ = C13H10

Quantity Value Units Method Reference Comment
Δr1468. ± 16.kJ/molD-EAGygax, Peters, et al., 1979gas phase; BDE: 65±2 kcal/mol, Gerst and Rüchardt, 1993
Quantity Value Units Method Reference Comment
Δr1440. ± 16.kJ/molH-TSGygax, Peters, et al., 1979gas phase; BDE: 65±2 kcal/mol, Gerst and Rüchardt, 1993

O2P- + Hydrogen cation = HO2P

By formula: O2P- + H+ = HO2P

Quantity Value Units Method Reference Comment
Δr1376. ± 18.kJ/molD-EAN/Agas phase
Δr1376. ± 17.kJ/molEndoViggiano, Morris, et al., 1991gas phase
Quantity Value Units Method Reference Comment
Δr1349. ± 18.kJ/molH-TSViggiano, Morris, et al., 1991gas phase

C12H8N- + Hydrogen cation = Carbazole

By formula: C12H8N- + H+ = C12H9N

Quantity Value Units Method Reference Comment
Δr1444. ± 8.8kJ/molG+TSTaft and Bordwell, 1988gas phase
Δr1404. ± 21.kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Δr1412. ± 8.4kJ/molIMRETaft and Bordwell, 1988gas phase

C4H7- + Hydrogen cation = Methylcyclopropane

By formula: C4H7- + H+ = C4H8

Quantity Value Units Method Reference Comment
Δr1712. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase
Δr1728. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase
Quantity Value Units Method Reference Comment
Δr1680. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase

C3HF6O4S2- + Hydrogen cation = C3H2F6O4S2

By formula: C3HF6O4S2- + H+ = C3H2F6O4S2

Quantity Value Units Method Reference Comment
Δr1258. ± 8.4kJ/molIMRELeito, Raamat, et al., 2009gas phase
Δr1261. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by up to 1.3 kcal/mol.

C10H6- + Hydrogen cation = Naphth-2-yl

By formula: C10H6- + H+ = C10H7

Quantity Value Units Method Reference Comment
Δr1577. ± 13.kJ/molG+TSReed, Hare, et al., 2000gas phase; Between tBuOD and 1-pentyne
Quantity Value Units Method Reference Comment
Δr1545. ± 13.kJ/molIMRBReed, Hare, et al., 2000gas phase; Between tBuOD and 1-pentyne

C5H11- + Hydrogen cation = Neopentane

By formula: C5H11- + H+ = C5H12

Quantity Value Units Method Reference Comment
Δr1711. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase
Δr1720. ± 42.kJ/molCIDTGraul and Squires, 1990gas phase
Quantity Value Units Method Reference Comment
Δr1674. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase

CH3O3S- + Hydrogen cation = Methanesulfonic acid

By formula: CH3O3S- + H+ = CH4O3S

Quantity Value Units Method Reference Comment
Δr1343. ± 9.2kJ/molG+TSKoppel, Taft, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr1318. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase
Δr1321. ± 8.4kJ/molIMRETaft, Koppel, et al., 1990gas phase

C7H4N3O6- + Hydrogen cation = Trinitrotoluene

By formula: C7H4N3O6- + H+ = C7H5N3O6

Quantity Value Units Method Reference Comment
Δr1320. ± 9.2kJ/molG+TSKoppel, Taft, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr1293. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase
Δr1351. ± 21.kJ/molIMRBDzidic, Carroll, et al., 1974gas phase

C6H8B- + Hydrogen cation = C6H9B

By formula: C6H8B- + H+ = C6H9B

Quantity Value Units Method Reference Comment
Δr1402. ± 17.kJ/molG+TSSullivan, 1977gas phase; Acid: 3-methyl-3-bora-1,4-cyclohexadiene
Quantity Value Units Method Reference Comment
Δr1370. ± 17.kJ/molIMRBSullivan, 1977gas phase; Acid: 3-methyl-3-bora-1,4-cyclohexadiene

C3N- + Hydrogen cation = Propiolonitrile

By formula: C3N- + H+ = C3HN

Quantity Value Units Method Reference Comment
Δr1467. ± 8.8kJ/molG+TSTaft, Abboud, et al., 1988gas phase
Δr1439. ± 15.kJ/molEIAEGraupner, Merrigan, et al., 2006gas phase
Quantity Value Units Method Reference Comment
Δr1435. ± 8.4kJ/molIMRETaft, Abboud, et al., 1988gas phase

C3H4I- + Hydrogen cation = 1-Propene, 3-iodo-

By formula: C3H4I- + H+ = C3H5I

Quantity Value Units Method Reference Comment
Δr1551. ± 8.8kJ/molG+TSPoutsma, Nash, et al., 1997gas phase; Stronger than MeCN, near FCH2CH2OH
Quantity Value Units Method Reference Comment
Δr1520. ± 8.4kJ/molIMRBPoutsma, Nash, et al., 1997gas phase; Stronger than MeCN, near FCH2CH2OH

C6H2Cl3- + Hydrogen cation = Benzene, 1,3,5-trichloro-

By formula: C6H2Cl3- + H+ = C6H3Cl3

Quantity Value Units Method Reference Comment
Δr1545. ± 8.8kJ/molG+TSSchlosser, Marzi, et al., 2001gas phase; Acid: 1,3,5-trichlorobenzene.
Quantity Value Units Method Reference Comment
Δr1510. ± 8.4kJ/molIMRESchlosser, Marzi, et al., 2001gas phase; Acid: 1,3,5-trichlorobenzene.

C7H11O4- + Hydrogen cation = Diethyl malonate

By formula: C7H11O4- + H+ = C7H12O4

Quantity Value Units Method Reference Comment
Δr1457. ± 9.6kJ/molG+TSCumming and Kebarle, 1978gas phase
Δr1442. ± 5.0kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999, 2gas phase
Quantity Value Units Method Reference Comment
Δr1432. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

C2H5- + Hydrogen cation = Ethane

By formula: C2H5- + H+ = C2H6

Quantity Value Units Method Reference Comment
Δr1758. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase
Δr1761. ± 8.4kJ/molBranDePuy, Bierbaum, et al., 1984gas phase
Quantity Value Units Method Reference Comment
Δr1723. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase

C4H9- + Hydrogen cation = Isobutane

By formula: C4H9- + H+ = C4H10

Quantity Value Units Method Reference Comment
Δr1728. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase
Δr1732. ± 8.4kJ/molBranDePuy, Bierbaum, et al., 1984gas phase
Quantity Value Units Method Reference Comment
Δr1697. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase

e- + Hydrogen cation = Hydrogen atom

By formula: e- + H+ = H

Quantity Value Units Method Reference Comment
Δr1318.4kJ/molAcidWagman, Evans, et al., 1982gas phase; Using the "electron convention". Acid = H.
Quantity Value Units Method Reference Comment
Δr1313.8kJ/molH-TSWagman, Evans, et al., 1982gas phase; Using the "electron convention". Acid = H.

C3H4F3- + Hydrogen cation = Propane, 1,1,1-trifluoro-

By formula: C3H4F3- + H+ = C3H5F3

Quantity Value Units Method Reference Comment
Δr1699. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase
Δr<1686.2kJ/molCIDTGraul and Squires, 1988gas phase
Quantity Value Units Method Reference Comment
Δr1667. ± 15.kJ/molH-TSGraul and Squires, 1990gas phase

C4H5O2- + Hydrogen cation = Isocrotonic acid

By formula: C4H5O2- + H+ = C4H6O2

Quantity Value Units Method Reference Comment
Δr1448. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Quantity Value Units Method Reference Comment
Δr1411. ± 12.kJ/molCIDCGraul, Schnute, et al., 1990gas phase
Δr1419. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase

C5H7O2- + Hydrogen cation = 2-Butenoic acid, 3-methyl-

By formula: C5H7O2- + H+ = C5H8O2

Quantity Value Units Method Reference Comment
Δr1447. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Quantity Value Units Method Reference Comment
Δr1415. ± 12.kJ/molCIDCGraul, Schnute, et al., 1990gas phase
Δr1418. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase

C5H8NO2- + Hydrogen cation = Proline

By formula: C5H8NO2- + H+ = C5H9NO2

Quantity Value Units Method Reference Comment
Δr1423. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Δr1431. ± 9.2kJ/molCIDCJones, Bernier, et al., 2007gas phase
Quantity Value Units Method Reference Comment
Δr1395. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C9H27Si4- + Hydrogen cation = Tris(trimethylsilyl)silane

By formula: C9H27Si4- + H+ = C9H28Si4

Quantity Value Units Method Reference Comment
Δr1468. ± 12.kJ/molD-EABrinkman, Berger, et al., 1994gas phase; DH revised: Laarhoven, Mulder, et al., 1999
Quantity Value Units Method Reference Comment
Δr1435. ± 12.kJ/molH-TSBrinkman, Berger, et al., 1994gas phase; DH revised: Laarhoven, Mulder, et al., 1999

C4H7O- + Hydrogen cation = 2-Butanone

By formula: C4H7O- + H+ = C4H8O

Quantity Value Units Method Reference Comment
Δr1678. ± 17.kJ/molCIDTGraul and Squires, 1990gas phase
Δr<1711.3kJ/molCIDTGraul and Squires, 1988gas phase
Quantity Value Units Method Reference Comment
Δr1646. ± 17.kJ/molH-TSGraul and Squires, 1990gas phase

L-Serine anion + Hydrogen cation = Serine

By formula: C3H6NO3- + H+ = C3H7NO3

Quantity Value Units Method Reference Comment
Δr1391. ± 22.kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1392. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1363. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C4H8NO3- + Hydrogen cation = Threonine

By formula: C4H8NO3- + H+ = C4H9NO3

Quantity Value Units Method Reference Comment
Δr1388. ± 10.kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1389. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1361. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C5H9N2O3- + Hydrogen cation = L-Glutamine

By formula: C5H9N2O3- + H+ = C5H10N2O3

Quantity Value Units Method Reference Comment
Δr1385. ± 11.kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1387. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1359. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C5H10NO2- + Hydrogen cation = Valine

By formula: C5H10NO2- + H+ = C5H11NO2

Quantity Value Units Method Reference Comment
Δr1431. ± 7.9kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1420. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1391. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

L-Methionine anion + Hydrogen cation = DL-Methionine

By formula: C5H10NO2S- + H+ = C5H11NO2S

Quantity Value Units Method Reference Comment
Δr1407. ± 9.2kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1405. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1376. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C6H8N3O2- + Hydrogen cation = Histidine

By formula: C6H8N3O2- + H+ = C6H9N3O2

Quantity Value Units Method Reference Comment
Δr1375. ± 7.9kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1385. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1356. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C6H12NO2- + Hydrogen cation = L-Isoleucine

By formula: C6H12NO2- + H+ = C6H13NO2

Quantity Value Units Method Reference Comment
Δr1423. ± 7.9kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1417. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1389. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C6H12NO2- + Hydrogen cation = Leucine

By formula: C6H12NO2- + H+ = C6H13NO2

Quantity Value Units Method Reference Comment
Δr1419. ± 10.kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1418. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1390. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C6H13N2O2- + Hydrogen cation = Lysine

By formula: C6H13N2O2- + H+ = C6H14N2O2

Quantity Value Units Method Reference Comment
Δr1416. ± 7.1kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1411. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1383. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C9H10NO2- + Hydrogen cation = Phenylalanine

By formula: C9H10NO2- + H+ = C9H11NO2

Quantity Value Units Method Reference Comment
Δr1418. ± 18.kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1408. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1379. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

L-Tryptophan anion + Hydrogen cation = Tryptophan

By formula: C11H11N2O2- + H+ = C11H12N2O2

Quantity Value Units Method Reference Comment
Δr1421. ± 9.2kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1409. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1380. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C5H9O2- + Hydrogen cation = n-Propyl acetate

By formula: C5H9O2- + H+ = C5H10O2

Quantity Value Units Method Reference Comment
Δr1554. ± 17.kJ/molG+TSHaas, Giblin, et al., 1998gas phase; From transesterification equilibria
Quantity Value Units Method Reference Comment
Δr1525. ± 17.kJ/molIMREHaas, Giblin, et al., 1998gas phase; From transesterification equilibria

C5H9O2- + Hydrogen cation = Isopropyl acetate

By formula: C5H9O2- + H+ = C5H10O2

Quantity Value Units Method Reference Comment
Δr1556. ± 17.kJ/molG+TSHaas, Giblin, et al., 1998gas phase; From transesterification equilibria
Quantity Value Units Method Reference Comment
Δr1528. ± 17.kJ/molIMREHaas, Giblin, et al., 1998gas phase; From transesterification equilibria

C6H11O2- + Hydrogen cation = Acetic acid, butyl ester

By formula: C6H11O2- + H+ = C6H12O2

Quantity Value Units Method Reference Comment
Δr1551. ± 17.kJ/molG+TSHaas, Giblin, et al., 1998gas phase; From transesterification equilibria
Quantity Value Units Method Reference Comment
Δr1523. ± 17.kJ/molIMREHaas, Giblin, et al., 1998gas phase; From transesterification equilibria

C5H5N2O- + Hydrogen cation = 2-Amino-3-hydroxypyridine

By formula: C5H5N2O- + H+ = C5H6N2O

Quantity Value Units Method Reference Comment
Δr1427. ± 12.kJ/molG+TSBreuker, Knochenmuss, et al., 1999gas phase; Acid: 2-amino-3-hydroxypyridine
Quantity Value Units Method Reference Comment
Δr1398. ± 11.kJ/molIMRBBreuker, Knochenmuss, et al., 1999gas phase; Acid: 2-amino-3-hydroxypyridine

CFO2- + Hydrogen cation = CHFO2

By formula: CFO2- + H+ = CHFO2

Quantity Value Units Method Reference Comment
Δr1380. ± 33.kJ/molD-EAArnold, Bradforth, et al., 1995gas phase
Δr1374.4kJ/molAcidLarson and McMahon, 1985gas phase
Quantity Value Units Method Reference Comment
Δr1350. ± 33.kJ/molH-TSArnold, Bradforth, et al., 1995gas phase

C3H5S- + Hydrogen cation = Thioacetone

By formula: C3H5S- + H+ = C3H6S

Quantity Value Units Method Reference Comment
Δr1469. ± 14.kJ/molG+TSZhang and Grabowski, 1989gas phase; Between H2S, PhOH (Acid = Me2C=S)
Quantity Value Units Method Reference Comment
Δr1439. ± 13.kJ/molIMRBZhang and Grabowski, 1989gas phase; Between H2S, PhOH (Acid = Me2C=S)

C3H9Sn- + Hydrogen cation = C3H10Sn

By formula: C3H9Sn- + H+ = C3H10Sn

Quantity Value Units Method Reference Comment
Δr1461. ± 8.8kJ/molG+TSBrinkman, Salomon, et al., 1995gas phase; Acidity between MeCO2H and PhOH
Quantity Value Units Method Reference Comment
Δr1431. ± 8.4kJ/molIMRBBrinkman, Salomon, et al., 1995gas phase; Acidity between MeCO2H and PhOH

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method, J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105 . [all data]

Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B., Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria, J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032 . [all data]

Decouzon, Ertl, et al., 1993
Decouzon, M.; Ertl, P.; Exner, O.; Gal, J.F.; Maria, P.C., Concepts of Sterically Hindered Resonance and Buttressing Effect - Gas-Phase Acidities of Methyl-Substituted Benzoic Acids and Basicities of, J. Am. Chem. Soc., 1993, 115, 25, 12071, https://doi.org/10.1021/ja00078a052 . [all data]

Decouzon, Exner, et al., 1990
Decouzon, M.; Exner, O.; Gal, J.-F.; Maria, P.-C., The Gas-Phase Acidity and the Acidic Site of Acetohydroxamic Acid: an FT-ICR Study, J. Org. Chem., 1990, 55, 13, 3980, https://doi.org/10.1021/jo00300a007 . [all data]

Gygax, Peters, et al., 1979
Gygax, R.; Peters, H.L.; Brauman, J.I., Photodetachment of electrons from anions of high symmetry. Electron photodetachment spectra of the cycloctatetraenyl and perinaphthenyl anions, J. Am. Chem. Soc., 1979, 101, 2567. [all data]

Gerst and Rüchardt, 1993
Gerst, M.; Rüchardt, C., H-Transferreaktionen mit Phenalen, Chem. Ber., 1993, 126, 4, 1039, https://doi.org/10.1002/cber.19931260426 . [all data]

Viggiano, Morris, et al., 1991
Viggiano, A.A.; Morris, R.A.; Dale, F.; Paulson, J.F.; Henshman, M.J.; Miller, T.M.; Miller, S., The Gas Phase Acidities of HPO3 and HPO2: Enthalpies of Deprotonation, J. Phys. Chem., 1991, 95, 3, 1275, https://doi.org/10.1021/j100156a044 . [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Khatymov, R.V.; Mazunov, V.A.; Takhistov, V.V.; Travkin, O.V.; Yakovleva, E.V., Thermochemistry of negatively charged ions. II. Energetics of formation of negative ions from acridanone and some of its derivatives, Rapid Commun. Mass Spectrom., 1999, 13, 10, 912-923, https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<912::AID-RCM585>3.0.CO;2-W . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Leito, Raamat, et al., 2009
Leito, I.; Raamat, E.; Kutt, A.; Saame, J.; Kipper, K.; Koppel, I.A.; Koppel, I.; Zhang, M.; Mishima, M.; Yagupolskii, L.M.; Garlyauskayte, R.Y.; Filatov, A.A., Revision of the Gas-Phase Acidity Scale below 300 kcal mol(-1), J. Phys. Chem. A, 2009, 113, 29, 8421-8424, https://doi.org/10.1021/jp903780k . [all data]

Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M., The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids, J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038 . [all data]

Reed, Hare, et al., 2000
Reed, D.R.; Hare, M.; Kass, S.R., Formation of gas-phase dianions and distonic ions as a general method for the synthesis of protected reactive intermediates. Energetics of 2,3-and 2,6-dehydronaphthalene, J. Am. Chem. Soc., 2000, 122, 43, 10689-10696, https://doi.org/10.1021/ja002351j . [all data]

Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F., Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids, J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001 . [all data]

Dzidic, Carroll, et al., 1974
Dzidic, I.; Carroll, D.I.; Stillwell, R.N.; Horning, E.C., Gas phase reactions. Ionization by proton transfer to superoxide anions, J. Am. Chem. Soc., 1974, 96, 5258. [all data]

Sullivan, 1977
Sullivan, S.A., Thesis, Cal. Inst. Tech. thesis,, 1977. [all data]

Taft, Abboud, et al., 1988
Taft, R.W.; Abboud, J.L.M.; Anvia, F.; Berthelot, M.; Fujio, M.; Gal, J.-F.; Headley, A.D.; Henderson, W.G., Regarding the Inherent Dependence of Resonance Effects of Strongly Conjugated Substituents on Electron Demand, J. Am. Chem. Soc., 1988, 110, 6, 1797, https://doi.org/10.1021/ja00214a023 . [all data]

Graupner, Merrigan, et al., 2006
Graupner, K.; Merrigan, T.L.; Field, T.A.; Youngs, T.G.A.; Marr, P.C., Dissociative Electron Attachment to HCCCN, New J. Phys., 2006, , 117 (2006), 7, 117, https://doi.org/10.1088/1367-2630/8/7/117 . [all data]

Poutsma, Nash, et al., 1997
Poutsma, J.C.; Nash, J.J.; Paulino, J.A.; Squires, R.R., Absolute Heats of Formation of Phenylcarbene and Vinylcarbene, J. Am. Chem. Soc., 1997, 119, 20, 4686, https://doi.org/10.1021/ja963918s . [all data]

Schlosser, Marzi, et al., 2001
Schlosser, M.; Marzi, E.; Cottet, F.; Buker, H.H.; Nibbering, N.M.M., The acidity of chloro-substituted benzenes: A comparison of gas phase, ab initio, and kinetic data, Chem. Eur. J., 2001, 7, 16, 3511-3516, https://doi.org/10.1002/1521-3765(20010817)7:16<3511::AID-CHEM3511>3.0.CO;2-U . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999, 2
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R., Relative Gas-Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1984, 106, 4051. [all data]

Wagman, Evans, et al., 1982
Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties (NBS Tech Note 270), J. Phys. Chem. Ref. Data, Supl. 1, 1982, 11. [all data]

Graul and Squires, 1988
Graul, S.T.; Squires, R.R., On the Existence of Alkyl Carbanions in the Gas Phase, J. Am. Chem. Soc., 1988, 110, 2, 607, https://doi.org/10.1021/ja00210a054 . [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Graul, Schnute, et al., 1990
Graul, S.T.; Schnute, M.E.; Squires, R.R., Gas-Phase Acidities of Carboxylic Acids and Alcohols from Collision-Induced Dissociation of Dimer Cluster Ions, Int. J. Mass Spectrom. Ion Proc., 1990, 96, 2, 181, https://doi.org/10.1016/0168-1176(90)87028-F . [all data]

O'Hair, Bowie, et al., 1992
O'Hair, R.J.; Bowie, J.H.; Gronert, S., Gas Phase Acidity of the alpha-Amino Acids, Int. J. Mass Spectrom. Ion Proc., 1992, 117, 23, https://doi.org/10.1016/0168-1176(92)80083-D . [all data]

Jones, Bernier, et al., 2007
Jones, C.M.; Bernier, M.; Carson, E.; Colyer, K.E.; Metz, R.; Pawlow, A.; Wischow, E.D.; Webb, I.; Andriole, E.J.; Poutsma, J.C., Gas-phase Acities of the 20 Protein Amino Acids, Int. J. Mass Spectrom., 2007, 267, 1-3, 54-62, https://doi.org/10.1016/j.ijms.2007.02.018 . [all data]

Brinkman, Berger, et al., 1994
Brinkman, E.A.; Berger, S.; Brauman, J.I., alpha-Silyl-substituent stabilization of carbanions and silyl anions, J. Am. Chem. Soc., 1994, 116, 18, 8304, https://doi.org/10.1021/ja00097a042 . [all data]

Laarhoven, Mulder, et al., 1999
Laarhoven, L.J.J.; Mulder, P.; Wayner, D.D.M., Determination of bond dissociation enthalpies in solution by photoacoustic calorimetry, Acc. Chem. Res., 1999, 32, 4, 342-349, https://doi.org/10.1021/ar9703443 . [all data]

Haas, Giblin, et al., 1998
Haas, G.W.; Giblin, D.E.; Gross, M.L., The Mechanism and Thermodynamics of Transesterification of Acetate-Ester Enolates in the Gas Phase, Int. J. Mass Spectrom. Ion Proc., 1998, 172, 1-2, 25, https://doi.org/10.1016/S0168-1176(97)83245-4 . [all data]

Breuker, Knochenmuss, et al., 1999
Breuker, K.; Knochenmuss, R.; Zenobi, R., Gas-phase basicities of deprotonated matrix-assisted laser desorption/ionization matrix molecules, Int. J. Mass Spectrom., 1999, 184, 1, 25-38, https://doi.org/10.1016/S1387-3806(98)14200-8 . [all data]

Arnold, Bradforth, et al., 1995
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M., Study of halogen carbon dioxide clusters and the fluoroformyloxyl radical by photodetachment of X(-)(CO2) (X=I,Cl,Br) and FCO2-, J. Chem. Phys., 1995, 102, 9, 3493, https://doi.org/10.1063/1.468575 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Zhang and Grabowski, 1989
Zhang, L.; Grabowski, J.J., The Gas-Phase Basicity and H/D Exchange Characteristics of the Parent Thiocarbonyl Enolate Anions, J. Chem. Soc. Chem. Comm. 1819, 1989. [all data]

Brinkman, Salomon, et al., 1995
Brinkman, E.A.; Salomon, K.; Tumas, W.; Brauman, J.I., Electron affinities and gas-phase acidities of organogermanium and organotin compounds, J. Am. Chem. Soc., 1995, 117, 17, 4905, https://doi.org/10.1021/ja00122a022 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References