Propane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-104.7 ± 0.50kJ/molCcbPittam and Pilcher, 1972ALS
Δfgas-103.8 ± 0.59kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; ALS
Quantity Value Units Method Reference Comment
Δcgas-2219.2 ± 0.46kJ/molCcbPittam and Pilcher, 1972Corresponding Δfgas = -104.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-2204.0 ± 0.54kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; Corresponding Δfgas = -119.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-2219.9 ± 0.50kJ/molCcbRossini, 1934Corresponding Δfgas = -103.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-2207.kJ/molCcbGuinchant, 1918Corresponding Δfgas = -117. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.0650.Chao J., 1973Recommended values are in good agreement with those calculated by [ Pitzer K.S., 1944].; GT
41.30100.
48.79150.
56.07200.
68.74273.15
73.60298.15
73.93300.
94.01400.
112.59500.
128.70600.
142.67700.
154.77800.
165.35900.
174.601000.
182.671100.
189.741200.
195.851300.
201.211400.
205.891500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
48.91148.2Ernst G., 1970Please also see Kistiakowsky G.B., 1940, Kistiakowsky G.B., 1940, 2, Dailey B.P., 1943.; GT
50.38157.8
58.58213.1
59.29219.2
65.90258.0
67.74272.38
72.67 ± 0.07293.15
73.55300.37
76.11 ± 0.08313.15
80.30 ± 0.08333.15
80.54334.05
82.26343.65
84.40 ± 0.08353.15
85.19360.05
87.45368.55
90.46387.75
104.89452.55
116.69521.15
121.75561.95
128.66603.25
140.62693.15

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-119.8 ± 0.59kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; ALS
Quantity Value Units Method Reference Comment
liquid171.0J/mol*KN/AKemp and Egan, 1938Debye extrapolation, 0 to 15 K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
98.36230.Vas'kov, 1982T = 90 to 230 K. Cp given as 2.2305 J/g*K.; DH
119.6300.Goodwin, 1978T = 81 to 289 K. Cp data reported for an extended data set; unsmoothed experimental datum.; DH
98.28230.Kemp and Egan, 1938T = 15 to 230 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil231.1 ± 0.2KAVGN/AAverage of 17 out of 21 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus85.5KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Tfus85.46KN/AKlipping and Schmidt, 1965Uncertainty assigned by TRC = 0.2 K; TRC
Tfus83.25KN/AHarteck and Edse, 1938Uncertainty assigned by TRC = 0.5 K; TRC
Tfus86.05KN/AHicks-Brunn and Bruun, 1936Uncertainty assigned by TRC = 0.15 K; TRC
Tfus85.35KN/ATimmermans, 1921Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Ttriple85. ± 3.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Ptriple1.685×10-9barN/AYounglove and Ely, 1987Uncertainty assigned by TRC = 1.×10-12 bar; TRC
Ptriple1.6895×10-9barN/AGoodwin and Haynes, 1982TRC
Quantity Value Units Method Reference Comment
Tc369.9 ± 0.2KAVGN/AAverage of 30 out of 37 values; Individual data points
Quantity Value Units Method Reference Comment
Pc42.5 ± 0.1barAVGN/AAverage of 25 out of 32 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.200l/molN/AAmbrose and Tsonopoulos, 1995 
Vc0.2l/molN/AYounglove and Ely, 1987Uncertainty assigned by TRC = 0.001 l/mol; TRC
Vc0.198l/molN/ABarber, Kay, et al., 1982Uncertainty assigned by TRC = 0.004 l/mol; TRC
Vc0.202l/molN/AMeyer, 1941Uncertainty assigned by TRC = 0.003 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc5.1 ± 0.4mol/lAVGN/AAverage of 14 out of 15 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap16.25kJ/molN/AMajer and Svoboda, 1985 

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
18.774231.04N/AKemp and Egan, 1938DH
19.04231.1N/AMajer and Svoboda, 1985 
18.8293.AStephenson and Malanowski, 1987Based on data from 278. - 332. K.; AC
19.5233.AStephenson and Malanowski, 1987Based on data from 165. - 248. K.; AC
22.1150.AStephenson and Malanowski, 1987Based on data from 104. - 165. K.; AC
19.0266.AStephenson and Malanowski, 1987Based on data from 231. - 281. K.; AC
19.2344.AStephenson and Malanowski, 1987Based on data from 329. - 369. K.; AC
18.9327.N/AMajer, Sváb, et al., 1980Based on data from 312. - 367. K.; AC
18.77256.N/AReid, 1972AC
20.0216.N/AReidel, 1938Based on data from 166. - 231. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 278. - 361.
A (kJ/mol) 27.9
α 0.0208
β 0.3766
Tc (K) 369.8
ReferenceMajer and Svoboda, 1985

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
81.26231.04Kemp and Egan, 1938DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
277.6 - 360.84.536781149.3624.906Helgeson and Sage, 1967Coefficents calculated by NIST from author's data.
230.6 - 320.73.98292819.296-24.417Rips, 1963Coefficents calculated by NIST from author's data.
166.02 - 231.414.01158834.26-22.763Kemp and Egan, 1938Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
28.586.BBondi, 1963AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
3.5185.5ACPerkins, Ochoa, et al., 2009AC
3.5285.5N/AAcree, 1991AC

Temperature of phase transition

Ttrs (K) Initial Phase Final Phase Reference Comment
45.5crystalineglassTakeda, Oguni, et al., 1990DH

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
3.52485.45crystaline, IliquidKemp and Egan, 1938DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
41.2485.45crystaline, IliquidKemp and Egan, 1938DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H7- + Hydrogen cation = Propane

By formula: C3H7- + H+ = C3H8

Quantity Value Units Method Reference Comment
Δr1755. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr1755. ± 20.kJ/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Δr1753. ± 8.4kJ/molBranDePuy, Bierbaum, et al., 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr1721. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr1722. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B

Propene + Hydrogen = Propane

By formula: C3H6 + H2 = C3H8

Quantity Value Units Method Reference Comment
Δr-123.4 ± 5.0kJ/molChydKistiakowsky and Nickle, 1951gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -124.9 ± 2.1 kJ/mol; ALS
Δr-125.0 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -126.00 ± 0.054 kJ/mol; At 355 °K; ALS

Hydrogen + Propane, 2-fluoro- = Propane + hydrogen fluoride

By formula: H2 + C3H7F = C3H8 + HF

Quantity Value Units Method Reference Comment
Δr-84.5 ± 1.3kJ/molChydLacher, Kianpour, et al., 1956gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -88.3 ± 2.9 kJ/mol; %hf298_gas[kcal/mol]=-66.97±0.71; Kolesov and Kozina, 1986; ALS

Hydrogen + n-Propyl fluoride = Propane + hydrogen fluoride

By formula: H2 + C3H7F = C3H8 + HF

Quantity Value Units Method Reference Comment
Δr-92.0 ± 2.1kJ/molChydLacher, Kianpour, et al., 1956gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -95.7 ± 6.7 kJ/mol; %hf298_gas[kcal/mol]=-66.71±0.62; Kolesov and Kozina, 1986; ALS

2Hydrogen + Propane, 1,2-dichloro- = Propane + 2Hydrogen chloride

By formula: 2H2 + C3H6Cl2 = C3H8 + 2HCl

Quantity Value Units Method Reference Comment
Δr-126.5 ± 1.1kJ/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -130.60 ± 0.54 kJ/mol; At 250 C; ALS

2Hydrogen + Propyne = Propane

By formula: 2H2 + C3H4 = C3H8

Quantity Value Units Method Reference Comment
Δr-289.6 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -288.8 ± 0.59 kJ/mol; At 355 K; ALS

2Hydrogen + Allene = Propane

By formula: 2H2 + C3H4 = C3H8

Quantity Value Units Method Reference Comment
Δr-295.1 ± 1.0kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -298.2 ± 0.84 kJ/mol; At 355 °K; ALS

Hydrogen + Propane, 2-bromo- = Hydrogen bromide + Propane

By formula: H2 + C3H7Br = HBr + C3H8

Quantity Value Units Method Reference Comment
Δr-45.40 ± 0.92kJ/molChydDavies, Lacher, et al., 1965gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -45.06 kJ/mol; ALS

EtCH2 anion + Hydrogen cation = Propane

By formula: C3H7- + H+ = C3H8

Quantity Value Units Method Reference Comment
Δr1739. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr1704. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B

C3H7+ + Propane = (C3H7+ • Propane)

By formula: C3H7+ + C3H8 = (C3H7+ • C3H8)

Quantity Value Units Method Reference Comment
Δr56.9kJ/molPHPMSSunner, Hirao, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KPHPMSSunner, Hirao, et al., 1989gas phase; M

C4H9+ + Propane = (C4H9+ • Propane)

By formula: C4H9+ + C3H8 = (C4H9+ • C3H8)

Quantity Value Units Method Reference Comment
Δr28.kJ/molPHPMSSunner, Hirao, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSSunner, Hirao, et al., 1989gas phase; M

Iron ion (1+) + Propane = (Iron ion (1+) • Propane)

By formula: Fe+ + C3H8 = (Fe+ • C3H8)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
74.9 (+4.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Cobalt ion (1+) + Propane = (Cobalt ion (1+) • Propane)

By formula: Co+ + C3H8 = (Co+ • C3H8)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
129. (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

C3H7BrMg (solution) + Hydrogen bromide (g) = Propane (solution) + Br2Mg (solution)

By formula: C3H7BrMg (solution) + HBr (g) = C3H8 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-305.9 ± 2.2kJ/molRSCHolm, 1981solvent: Diethyl ether; MS

C5O5W (g) + Propane (g) = C8H8O5W (g)

By formula: C5O5W (g) + C3H8 (g) = C8H8O5W (g)

Quantity Value Units Method Reference Comment
Δr-33.9 ± 8.4kJ/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K; MS

Hydrogen + n-Propyl chloride = Propane + Hydrogen chloride

By formula: H2 + C3H7Cl = C3H8 + HCl

Quantity Value Units Method Reference Comment
Δr-65.81 ± 0.67kJ/molChydDavies, Lacher, et al., 1965gas phase; ALS

Hydrogen + Propane, 2-chloro- = Propane + Hydrogen chloride

By formula: H2 + C3H7Cl = C3H8 + HCl

Quantity Value Units Method Reference Comment
Δr-58.32 ± 0.71kJ/molChydDavies, Lacher, et al., 1965gas phase; ALS

Propane, 1-bromo- + Hydrogen = Hydrogen bromide + Propane

By formula: C3H7Br + H2 = HBr + C3H8

Quantity Value Units Method Reference Comment
Δr-56.78kJ/molChydDavies, Lacher, et al., 1965gas phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 18863

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 CH3 d-str 2977  C 2977 gas
a1 2 CH3 s-str 2962  D 2962 gas
a1 3 CH2 s-str 2887  C 2887 gas
a1 4 CH3 d-deform 1476  C 1476 gas
a1 5 CH2 scis 1462  C 1462 gas
a1 6 CH3 s-deform 1392  C 1392 gas
a1 7 CH3 rock 1158  C 1158 gas 1152 W liq.
a1 8 CC str 869  C 869 gas 867 S liq.
a1 9 CCC deform 369  C 369 gas 375 W liq.
a2 10 CH3 d-str 2967  C  ia 2967 M liq.
a2 11 CH3 d-deform 1451  C  ia 1451 S liq.
a2 12 CH2 twist 1278  C  ia 1278 W liq.
a2 13 CH3 rock 940  D  ia 940 VW liq.
a2 14 Torsion 216  C  ia MW ( ?/?)
b1 15 CH3 d-str 2968  C 2968 gas
b1 16 CH3 s-str 2887  C 2887 gas OV3)
b1 17 CH3 d-deform 1464  C 1464 gas
b1 18 CH3 s-deform 1378  C 1378 gas
b1 19 CH2 wag 1338  C 1338 gas 1338 M liq.
b1 20 CC str 1054  C 1054 gas 1054 M liq.
b1 21 CH3 rock 922  C 922 gas
b2 22 CH3 d-str 2973  C 2973 gas
b2 23 CH2 a-str 2968  C 2968 gas
b2 24 CH3 d-deform 1472  C 1472 gas
b2 25 CH3 rock 1192  C 1192 gas
b2 26 CH2 rock 748  C 748 gas
b2 27 Torsion 268  C MW ( ?/?)

Source: Shimanouchi, 1972

Notes

SStrong
MMedium
WWeak
VWVery weak
iaInactive
OVOverlapped by band indicated in parentheses.
MWTorsional Frequency calculated from microwave spectroscopic data.
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Rossini, 1934
Rossini, F.D., Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane, J. Res. NBS, 1934, 12, 735-750. [all data]

Guinchant, 1918
Guinchant, M.J., Etude sur la fonction acide dans les derives metheniques et methiniques, Ann. Chem., 1918, 10, 30-84. [all data]

Chao J., 1973
Chao J., Ideal gas thermodynamic properties of ethane and propane, J. Phys. Chem. Ref. Data, 1973, 2, 427-438. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Ernst G., 1970
Ernst G., Ideal and real gas state heat capacities Cp of C3H8, i-C4H10, C2F5Cl, CH2ClCF3, CF2ClCFCl2, and CHF2Cl, J. Chem. Thermodyn., 1970, 2, 787-791. [all data]

Kistiakowsky G.B., 1940
Kistiakowsky G.B., The low temperature gaseous heat capacities of certain C3 hydrocarbons, J. Chem. Phys., 1940, 8, 970-977. [all data]

Kistiakowsky G.B., 1940, 2
Kistiakowsky G.B., Gaseous heat capacities. II, J. Chem. Phys., 1940, 8, 610-618. [all data]

Dailey B.P., 1943
Dailey B.P., The heat capacities at higher temperatures of ethane and propane, J. Am. Chem. Soc., 1943, 65, 42-44. [all data]

Kemp and Egan, 1938
Kemp, J.D.; Egan, C.J., Hindered rotation of the methyl groups in propane. The heat capacity, vapor pressure, heats of fusion and vaporization of propane. Entropy and density of the gas, J. Am. Chem. Soc., 1938, 60, 1521-1525. [all data]

Vas'kov, 1982
Vas'kov, E.T., Heat capacity of propane, Deposited Doc., 1982, VINITI 1728-82, 1-15. [all data]

Goodwin, 1978
Goodwin, R.D., Specific heats of saturated and compressed liquid propane, J. Res., 1978, NBS 83, 449-458. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Klipping and Schmidt, 1965
Klipping, G.; Schmidt, F., Temperature Measurement with the Vapor Pressure Thermometer, Kaeltetechnik, 1965, 17, 382-4. [all data]

Harteck and Edse, 1938
Harteck, P.; Edse, R., Vapor-pressure Measurement of Propane, Z. Phys. Chem., Abt. A, 1938, 182, 220. [all data]

Hicks-Brunn and Bruun, 1936
Hicks-Brunn, M.M.; Bruun, J.H., The Freezing and Boiling Point of Propane, J. Am. Chem. Soc., 1936, 58, 810-2. [all data]

Timmermans, 1921
Timmermans, J., The Freezing Points of Organic Substances IV. New Exp. Determinations, Bull. Soc. Chim. Belg., 1921, 30, 62. [all data]

Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F., Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Phys. Chem. Ref. Data, 1987, 16, 577. [all data]

Goodwin and Haynes, 1982
Goodwin, R.D.; Haynes, W.M., Thermophysical Properties of Propane from 85 to 700 K at Pressures to 70 MPa, NBS Monogr. (U. S.) No. 170, 249 pp., 1982. [all data]

Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C., Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes, J. Chem. Eng. Data, 1995, 40, 531-546. [all data]

Barber, Kay, et al., 1982
Barber, J.R.; Kay, W.B.; Teja, A.S., A study of the volumetric and phase behavior of binary systems: part I. critical properties of propane + perfluorocyclobutane mixtures., AIChE J., 1982, 28, 134-8. [all data]

Meyer, 1941
Meyer, R.E., , Ph.D. Thesis, Penn. State Univ., Univ. Park, PA, 1941. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Majer, Sváb, et al., 1980
Majer, V.; Sváb, L.; Svoboda, V., Enthalpies of vaporization and cohesive energies for a group of chlorinated hydrocarbons, The Journal of Chemical Thermodynamics, 1980, 12, 9, 843-847, https://doi.org/10.1016/0021-9614(80)90028-2 . [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Reidel, 1938
Reidel, L., Z. Ges. Kalte-Ind., 1938, 45, 221. [all data]

Helgeson and Sage, 1967
Helgeson, N.L.; Sage, B.H., Latent Heat of Vaporization of Propane, J. Chem. Eng. Data, 1967, 12, 1, 47-49, https://doi.org/10.1021/je60032a015 . [all data]

Rips, 1963
Rips, S.M., On a Feasible Level of Filling in of Reservoires by Liquid Hydrocarbons, Khim. Prom. (Moscow), 1963, 8, 610-613. [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Perkins, Ochoa, et al., 2009
Perkins, Richard A.; Ochoa, Jesus C. Sanchez; Magee, Joseph W., Thermodynamic Properties of Propane. II. Molar Heat Capacity at Constant Volume from (85 to 345) K with Pressures to 35 MPa, J. Chem. Eng. Data, 2009, 54, 12, 3192-3201, https://doi.org/10.1021/je900137r . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Takeda, Oguni, et al., 1990
Takeda, K.; Oguni, M.; Suga, H., A DTA apparatus for vapour-deposited samples. Characterisation of some vapour-deposited hydrocarbons, Thermochim. Acta, 1990, 158(1), 195-203. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R., Relative Gas-Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1984, 106, 4051. [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons, J. Am. Chem. Soc., 1935, 57, 876-882. [all data]

Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Park, J.D., Reaction heats of organic halogen compounds. VI. The catalytic hydrogenation of some alkyl fluorides, J. Phys. Chem., 1956, 60, 1454-1455. [all data]

Kolesov and Kozina, 1986
Kolesov, V.P.; Kozina, M.P., Thermochemistry of organic and organohalogen compounds, Russ. Chem. Rev., 1986, 55, 912. [all data]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Davies, Lacher, et al., 1965
Davies, J.; Lacher, J.R.; Park, J.D., Reaction heats of organic compounds. Part 4.-Heats of hydrogenation of n- and iso-Propyl bromides and chlorides, Trans. Faraday Soc., 1965, 61, 2413-2416. [all data]

Sunner, Hirao, et al., 1989
Sunner, J.A.; Hirao, K.; Kebarle, P., Hydride - Transfer Reactions. Temperature Dependence of Rate Constants for i-C3H7+ + HC(CH3)3 = C3H8 + C(CH3)3+. Clusters of i-C3H7+ and t-C4H9+ with Propane and Isobutane, J. Phys. Chem., 1989, 93, 10, 4010, https://doi.org/10.1021/j100347a030 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References