Cyclopentane, methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-106.0kJ/molN/AGood and Smith, 1969Value computed using ΔfHliquid° value of -137.7±0.7 kj/mol from Good and Smith, 1969 and ΔvapH° value of 31.7 kj/mol from Prosen, Johnson, et al., 1946.; DRB
Δfgas-106.7 ± 0.84kJ/molCcbProsen, Johnson, et al., 1946ALS
Δfgas-108.1kJ/molN/AMoore, Renquist, et al., 1940Value computed using ΔfHliquid° value of -139.8±1.7 kj/mol from Moore, Renquist, et al., 1940 and ΔvapH° value of 31.7 kj/mol from Prosen, Johnson, et al., 1946.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
43.3150.Thermodynamics Research Center, 1997p=1 bar. Selected values of S(T) and Cp(T) are in close agreement with those calculated by [ Scott D.W., 1960] at low temperatures. Discrepancies increase up to 1.8 J/mol*K at 1000-1500 K.; GT
53.01100.
62.63150.
74.75200.
99.62273.15
109.5298.15
110.3300.
151.5400.
188.9500.
220.3600.
246.6700.
268.6800.
287.4900.
303.41000.
317.11100.
328.91200.
339.01300.
347.81400.
355.41500.
370.41750.
381.12000.
389.12250.
395.12500.
399.72750.
403.33000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
124.24 ± 0.25333.20McCullough J.P., 1959GT
136.21 ± 0.27362.55
152.15 ± 0.30402.35
165.21 ± 0.33436.25
178.17 ± 0.36471.05

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-137.7 ± 0.71kJ/molCcbGood and Smith, 1969ALS
Δfliquid-138.4 ± 0.84kJ/molCcbProsen, Johnson, et al., 1946ALS
Δfliquid-139.8 ± 1.7kJ/molCcbMoore, Renquist, et al., 1940Reanalyzed by Cox and Pilcher, 1970, Original value = -141.1 kJ/mol; see Moore and Parks, 1939; ALS
Quantity Value Units Method Reference Comment
Δcliquid-3938.3 ± 0.59kJ/molCcbGood and Smith, 1969Corresponding Δfliquid = -137.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3937.7 ± 0.75kJ/molCcbProsen, Johnson, et al., 1946Corresponding Δfliquid = -138.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3936.2 ± 1.7kJ/molCcbMoore, Renquist, et al., 1940Reanalyzed by Cox and Pilcher, 1970, Original value = -3934.5 ± 1.7 kJ/mol; see Moore and Parks, 1939; Corresponding Δfliquid = -139.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3956.kJ/molCcbZubova, 1901Corresponding Δfliquid = -120. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid247.78J/mol*KN/ADouslin and Huffman, 1946DH
liquid247.7J/mol*KN/AHuffman, Parks, et al., 1931Extrapolation below 90 K, 57.86 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
157.66293.15Siddiqi, Svejda, et al., 1983DH
159.12299.8Connolly, Sage, et al., 1951T = 80 to 200°F.; DH
158.70298.15Douslin and Huffman, 1946T = 12 to 300 K.; DH
157.3295.7Huffman, Parks, et al., 1931T = 92 to 294 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil345.0 ± 0.2KAVGN/AAverage of 35 out of 41 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus131. ± 1.KAVGN/AAverage of 30 out of 35 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple130.5 ± 0.6KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tc532.7 ± 0.2KN/ADaubert, 1996 
Tc532.7KN/AMajer and Svoboda, 1985 
Tc532.73KN/AKudchadker, Alani, et al., 1968Uncertainty assigned by TRC = 0.3 K; TRC
Tc532.7KN/AAmbrose, Cox, et al., 1960Uncertainty assigned by TRC = 0.2 K; Vis, PRT, IPTS-48; TRC
Tc532.76KN/AKay, 1947Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Pc37.9 ± 0.4barN/ADaubert, 1996 
Pc37.84barN/AKudchadker, Alani, et al., 1968Uncertainty assigned by TRC = 0.4053 bar; TRC
Pc37.8591barN/AKay, 1947Uncertainty assigned by TRC = 0.0506 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.318l/molN/ADaubert, 1996 
Quantity Value Units Method Reference Comment
ρc3.14 ± 0.04mol/lN/ADaubert, 1996 
ρc3.137mol/lN/AKudchadker, Alani, et al., 1968Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc3.14mol/lN/AKay, 1947Uncertainty assigned by TRC = 0.02 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap31.7 ± 0.1kJ/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
29.08345.N/AMajer and Svoboda, 1985 
31.4315.N/ASapei, Uusi-Kyyny, et al., 2010Based on data from 300. to 345. K.; AC
31.9303.A,MMStephenson and Malanowski, 1987Based on data from 288. to 346. K. See also Willingham, Taylor, et al., 1945.; AC
31.33 ± 0.02304.VMcCullough, Pennington, et al., 1959ALS
31.3 ± 0.1304.CMcCullough, Pennington, et al., 1959AC
30.2 ± 0.1326.CMcCullough, Pennington, et al., 1959AC
29.1 ± 0.1345.CMcCullough, Pennington, et al., 1959AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
298. to 345.45.980.271532.7Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
288.18 to 345.783.987731186.059-47.108Williamham, Taylor, et al., 1945

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
6.9287130.73Douslin and Huffman, 1946DH
6.93130.7Domalski and Hearing, 1996AC
6.883130.1Huffman, Parks, et al., 1931DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
53.00130.73Douslin and Huffman, 1946DH
52.9130.1Huffman, Parks, et al., 1931DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + Cyclopentene, 1-methyl- = Cyclopentane, methyl-

By formula: H2 + C6H10 = C6H12

Quantity Value Units Method Reference Comment
Δr-100.8 ± 0.63kJ/molChydRogers, Crooks, et al., 1987liquid phase
Δr-101.3 ± 0.50kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane
Δr-96.3 ± 0.2kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid
Δr-96.3 ± 0.2kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid
Δr-96.3 ± 0.2kJ/molChydTurner and Garner, 1957, 2liquid phase; solvent: Acetic acid

Hydrogen + Cyclopentane, methylene- = Cyclopentane, methyl-

By formula: H2 + C6H10 = C6H12

Quantity Value Units Method Reference Comment
Δr-115.9 ± 0.96kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane
Δr-112.5 ± 0.08kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid
Δr-112.3 ± 0.2kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid
Δr-112.2 ± 0.3kJ/molChydTurner and Garner, 1957, 2liquid phase; solvent: Acetic acid

Cyclopentene, 3-methyl- + Hydrogen = Cyclopentane, methyl-

By formula: C6H10 + H2 = C6H12

Quantity Value Units Method Reference Comment
Δr-115.4 ± 0.75kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane

Cyclopentane, methyl- = Cyclohexane

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr-14.69kJ/molEqkGlasebrook and Lovell, 1939liquid phase; Heat of isomerization

2Hydrogen + Bicyclo(3.1.0)hex-2-ene = Cyclopentane, methyl-

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-264. ± 0.8kJ/molChydRoth, Adamczak, et al., 1991liquid phase

3Hydrogen + Fulvene = Cyclopentane, methyl-

By formula: 3H2 + C6H6 = C6H12

Quantity Value Units Method Reference Comment
Δr-330. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase

2Hydrogen + 3-Methylenecyclopentene = Cyclopentane, methyl-

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-221. ± 0.8kJ/molChydRoth, Adamczak, et al., 1991liquid phase

Cyclohexane = Cyclopentane, methyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr18.1 ± 1.2kJ/molEqkKabo and Andreevskii, 1973liquid phase

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0028 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0028 LN/A 
0.0028 VN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C6H12+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.7 ± 0.1eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
9.62 ± 0.05EIHolmes and Lossing, 1991LL
9.85EQLias, Ausloos, et al., 1976LLK
10.42EILossing and Traeger, 1975LLK
10.34 ± 0.04PERang, Paldoia, et al., 1974LLK
10.45EIPottie, Harrison, et al., 1961RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C5H9+10.42CH3EILossing and Traeger, 1975, 2LLK
C5H9+10.73CH3EILossing and Traeger, 1975LLK
C5H9+10.95CH3EIPottie, Harrison, et al., 1961RDSH

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1064
NIST MS number 227793

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good and Smith, 1969
Good, W.D.; Smith, N.K., Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane, J. Chem. Eng. Data, 1969, 14, 102-106. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons, J. Res. NBS, 1946, 37, 51-56. [all data]

Moore, Renquist, et al., 1940
Moore, G.E.; Renquist, M.L.; Parks, G.S., Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins, J. Am. Chem. Soc., 1940, 62, 1505-1507. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Scott D.W., 1960
Scott D.W., Chemical thermodynamic properties of methylcyclopentane and 1-cis-3-dimethylcyclopentane, J. Phys. Chem., 1960, 64, 906-908. [all data]

McCullough J.P., 1959
McCullough J.P., Thermodynamics of cyclopentane, methylcyclopentane and 1,cis-3-dimethylcyclopentane: verification of the concept of pseudorotation, J. Am. Chem. Soc., 1959, 81, 5880-5883. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Moore and Parks, 1939
Moore, G.E.; Parks, G.S., New thermodynamic data for the cyclohexane-methylcyclopentane isomerization, J. Am. Chem. Soc., 1939, 61, 2561-2562. [all data]

Zubova, 1901
Zubova, P., Data about heat of combustion of compound cycle structure, Zh. Fiz. Khim., 1901, 33, 708-722. [all data]

Douslin and Huffman, 1946
Douslin, D.R.; Huffman, H.M., The heat capacities, heats of transition, heats of fusion and entropies of cyclopentane, methylcyclopentane and methylcylohexane, J. Am. Chem. Soc., 1946, 68, 173-176. [all data]

Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M., Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons, J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]

Siddiqi, Svejda, et al., 1983
Siddiqi, M.A.; Svejda, P.; Kohler, F., A generalized van der Waals equation of state II. Excess heat capacities of mixtures containing cycloalkanes (C5,C6), methylcycloalkanes (C5,C6) and n-decane, Ber. Bunsenges. Phys. Chem., 1983, 87, 1176-1181. [all data]

Connolly, Sage, et al., 1951
Connolly, T.J.; Sage, B.H.; Lacey, W.N., Isobaric heat capacities at bubble point. n-Hexane, methylcyclopentane, and n-octane, Ind. Eng. Chem., 1951, 43, 946-950. [all data]

Daubert, 1996
Daubert, T.E., Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes, J. Chem. Eng. Data, 1996, 41, 365-372. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Kudchadker, Alani, et al., 1968
Kudchadker, A.P.; Alani, G.H.; Zwolinski, B.J., The Critical Constants of Organic Substances, Chem. Rev., 1968, 68, 659. [all data]

Ambrose, Cox, et al., 1960
Ambrose, D.; Cox, J.D.; Townsend, R., The critical temperatures of forty organic compounds, Trans. Faraday Soc., 1960, 56, 1452. [all data]

Kay, 1947
Kay, W.B., Vapor Pressures and Saturated Liquid and Vapor DEensities of Cyclopentane, Methylcyclopentane, Ethylcyclopentane, and Methylcyclohexane, J. Am. Chem. Soc., 1947, 69, 1273-7. [all data]

Sapei, Uusi-Kyyny, et al., 2010
Sapei, Erlin; Uusi-Kyyny, Petri; Keskinen, Kari I.; Alopaeus, Ville, Phase equilibria of binary systems of 3-methylthiophene with four different hydrocarbons, Fluid Phase Equilibria, 2010, 288, 1-2, 155-160, https://doi.org/10.1016/j.fluid.2009.11.004 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

McCullough, Pennington, et al., 1959
McCullough, J.P.; Pennington, R.E.; Smith, J.C.; Hossenlopp, I.A.; Waddington, G., Thermodynamics of cyclopentane, methylcyclopentane and 1,cis-3-dimethylcyclopentane: Verification of the concept of pseudorotation, J. Am. Chem. Soc., 1959, 81, 5880-5883. [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K., Enthalpies of hydrogenation of the hexenes, J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]

Allinger, Dodziuk, et al., 1982
Allinger, N.L.; Dodziuk, H.; Rogers, D.W.; Naik, S.N., Heats of hydrogenation and formation of some 5-membered ring compounds by molecular mechanics calculations and direct measurements, Tetrahedron, 1982, 38, 1593-1597. [all data]

Turner and Garner, 1958
Turner, R.B.; Garner, R.H., Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs, J. Am. Chem. Soc., 1958, 80, 1424-1430. [all data]

Turner and Garner, 1957
Turner, R.B.; Garner, R.H., Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs, J. Am. Chem. Soc., 1957, 80, 1424-1430. [all data]

Turner and Garner, 1957, 2
Turner, R.B.; Garner, R.H., The stability relationship of 1-methyl-cyclopentene and methylenecyclopentane, J. Am. Chem. Soc., 1957, 79, 253. [all data]

Glasebrook and Lovell, 1939
Glasebrook, A.L.; Lovell, W.G., The isomerization of cyclohexane and methylcyclopentane, J. Am. Chem. Soc., 1939, 61, 1717-1720. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Kabo and Andreevskii, 1973
Kabo, G.Ya.; Andreevskii, D.N., Thermodynamic characteristics of the cyclohexane = methylcyclopentane isomerization, Zh. Fiz. Khim., 1973, 47, 272-273. [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z., Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials, Int. J. Chem. Kinet., 1976, 8, 725. [all data]

Lossing and Traeger, 1975
Lossing, F.P.; Traeger, J.C., Stabilization in cyclopentadienyl, cyclopentenyl, and cyclopentyl cations, J. Am. Chem. Soc., 1975, 97, 1579. [all data]

Rang, Paldoia, et al., 1974
Rang, S.; Paldoia, P.; Talvari, A., Ionization potentials of unsaturated hydrocarbons. 2. Mono-substituted cyclopentenes and cyclohexenes, Eesti. NSV Tead. Akad. Toim., 1974, 354. [all data]

Pottie, Harrison, et al., 1961
Pottie, R.F.; Harrison, A.G.; Lossing, F.P., Free radicals by mass spectrometry. XXIV. Ionization potentials of cycloalkyl free radicals and cycloalkanes, J. Am. Chem. Soc., 1961, 83, 3204. [all data]

Lossing and Traeger, 1975, 2
Lossing, F.P.; Traeger, J.C., Free radicals by mass spectrometry XLVI. Heats of formation of C5H7 and C5H9 radicals and cations., J. Am. Chem. Soc., 1975, 19, 9. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References