Propanal

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H5O- + Hydrogen cation = Propanal

By formula: C3H5O- + H+ = C3H6O

Quantity Value Units Method Reference Comment
Δr1528. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1531. ± 10.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr1501. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1504. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

Propanal + Hydrogen = 1-Propanol

By formula: C3H6O + H2 = C3H8O

Quantity Value Units Method Reference Comment
Δr-84.3 ± 0.4kJ/molCmWiberg, Crocker, et al., 1991liquid phase; solvent: Triglyme; Heat of hydrogenation; ALS
Δr-69.55 ± 0.76kJ/molEqkConnett, 1972gas phase; At 473-524 K; ALS
Δr-65.77 ± 0.67kJ/molChydBuckley and Cox, 1967gas phase; ALS

Nitric oxide anion + Propanal = (Nitric oxide anion • Propanal)

By formula: NO- + C3H6O = (NO- • C3H6O)

Quantity Value Units Method Reference Comment
Δr159.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978, ref. to PA(NH3)=872. kJ/mol; M

(C3H7O- • 4294967295Propanal) + Propanal = C3H7O-

By formula: (C3H7O- • 4294967295C3H6O) + C3H6O = C3H7O-

Quantity Value Units Method Reference Comment
Δr172. ± 9.2kJ/molN/ABartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

Magnesium ion (1+) + Propanal = (Magnesium ion (1+) • Propanal)

By formula: Mg+ + C3H6O = (Mg+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr270. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Propane, 1,1-dimethoxy- + Water = Propanal + 2Methyl Alcohol

By formula: C5H12O2 + H2O = C3H6O + 2CH4O

Quantity Value Units Method Reference Comment
Δr37.65 ± 0.071kJ/molEqkWiberg and Squires, 1981liquid phase; ALS

Propylene oxide = Propanal

By formula: C3H6O = C3H6O

Quantity Value Units Method Reference Comment
Δr-98.7kJ/molEqkPolkovnikova and Lapiclus, 1974gas phase; At 300 K; ALS

Propanal = 2-Propen-1-ol

By formula: C3H6O = C3H6O

Quantity Value Units Method Reference Comment
Δr-32.kJ/molEqkPolkovnikova and Lapiclus, 1974gas phase; At 300 K; ALS

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Connett, 1972
Connett, J.E., Chemical equilibria. 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique, J. Chem. Thermodyn., 1972, 4, 233-237. [all data]

Buckley and Cox, 1967
Buckley, E.; Cox, J.D., Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Wiberg and Squires, 1981
Wiberg, K.B.; Squires, R.R., Thermochemical studies of carbonyl reactions. 2. Steric effects in acetal and ketal hydrolysis, J. Am. Chem. Soc., 1981, 103, 4473-4478. [all data]

Polkovnikova and Lapiclus, 1974
Polkovnikova, A.G.; Lapiclus, V.L., Calculation of the equilibrium and heat of isomerization of propylene oxide on a lithium phosphate catalyst, Neftekhimiya, 1974, 14, 113-115. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References